organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-[2-(1,3-Dioxoisoindolin-2-yl)-1,3-thia­zol-4-yl]benzo­nitrile

CROSSMARK_Color_square_no_text.svg

aDrug Discovery Lab, Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, bDepartment of Pharmacology, PSG College of Pharmacy, Coimbatore 641 004, India, cDrug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781 035, India, and dPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: profskabilan@gmail.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 6 July 2016; accepted 8 July 2016; online 15 July 2016)

The title iso­indole, C18H8N3O2S, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit whose geometrical features are similar. The benzo­nitrile ring is oriented at an angle of 2.1 (1)° (mol­ecule A) and 16.0 (1)° (mol­ecule B), with respect to the iso­indole ring system. In the crystal, A mol­ecules are linked via C—H⋯N hydrogen bonds, forming C(15) chains propagating along along the c axis. B mol­ecules are linked via C—H⋯O inter­actions, forming dimers with an R22(10) graph-set motif. C—H⋯O and C—H⋯N inter­actions, charcterized by R22(15) and R21(7) motifs, are observed between mol­ecules A and B.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In a continuation of our work on the crystal structure analysis of iso­indole derivatives (Saravanan et al., 2016[Saravanan, K., Archana, K., Lakshmithendral, K., Kabilan, S. & Selvanayagam, S. (2016). IUCrData 1, x161053.]), we have undertaken a single-crystal X-ray diffraction study of the title compound which has confirmed the mol­ecular structure and atomic connectivity, as illustrated in Fig. 1[link]. The asymmetric unit of contains two mol­ecules (A and B) (Fig. 1[link]); their corresponding bond lengths and bond angles are in good agreement. Fig. 2[link] shows a superposition of the two mol­ecules using Qmol (Gans & Shalloway, 2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); the r.m.s. deviation is 0.2 Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Superposition of mol­ecule A (red) with mol­ecule B (blue).

The thia­zole ring is planar with the maximum deviation of 0.001 (3) Å for atoms C9 and C9′ in mol­ecules A and B. Keto atoms O2 and O3 deviate from the mean plane of the ring to which they are attached by 0.032 (2) and −0.044 (3) Å, respectively, in mol­ecule A, −0.011 (3) and −0.122 (3) Å in mol­ecule B. The nitrile group atoms (C18 and N1/C18′ and N1′) deviate by −0.036 (4) and −0.145 (2) Å, respectively, in mol­ecule A, −0.015 (3) and −0.028 (3) Å in mol­ecule B. The benzo­nitrile rings make dihedral angles of 4.2 (1) (mol­ecule A) and 3.4 (1)° (mol­ecule B) with thia­zole rings. The benzo­nitrile ring in mol­ecule A is oriented at an angle of 2.1 (1)° with respect to the iso­indole ring system whereas it is oriented at an angle of 16.0 (1)° in mol­ecule B.

The mol­ecular structure is influenced by intra­molecular C—H⋯N hydrogen bonds (Table 1[link]). In the crystal, C13—H13⋯N3 hydrogen bonds link A mol­ecules, forming C(15) chains propagating along the c axis; see Fig. 3[link]. C12′—H12′⋯O2′ inter­actions form dimers of B mol­ecules with graph-set motif R22(10). There are inter­molecular inter­actions between mol­ecules A and B: C2—H2⋯N3′ and C2′—H2′⋯O3 form an R22(15) ring, while C5′—H5′⋯O2 and C8′—H8′⋯O2 form an R12(7) ring; see Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1 0.93 2.48 2.818 (4) 102
C1′—H1′⋯N1′ 0.93 2.52 2.856 (4) 101
C2—H2⋯N3′i 0.93 2.61 3.376 (4) 141
C13—H13⋯N3ii 0.93 2.51 3.324 (5) 146
C5′—H5′⋯O2iii 0.93 2.55 3.444 (3) 161
C8′—H8′⋯O2iii 0.93 2.48 3.346 (3) 156
C12′—H12′⋯O2′iv 0.93 2.50 3.285 (4) 143
C2′—H2′⋯O3v 0.93 2.61 3.395 (3) 142
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y-1, z; (iv) -x+1, -y, -z+2; (v) x-1, y, z.
[Figure 3]
Figure 3
Crystal packing of the title compound, viewed approximately along the b axis. The C13—H13⋯N3 and the C2—H2⋯N3′ hydrogen bonds along the c and a axes, respectively, are shown with dashed lines.
[Figure 4]
Figure 4
The C12′—H12′⋯O2 inter­actions along the a axis exhibit an R22(10) motif, while C5′—H5′⋯O2 and C8′—H8′⋯O2 hydrogen bonds form a ring with an R12(7) graph-set motif.

Synthesis and crystallization

A mixture of 4-(2-amino­thia­zol-4-yl)benzo­nitrile (300 mg, 1.49 mmol), phthalic anhydride (441 mmol, 2.98 mmol) in glacial acetic acid (5 ml) was refluxed for 3 h. After cooling, the resulting solid was collected by filtration, washed with petroleum ether and dried under vacuum, giving the compound as a lemon-yellow solid. The solid was further recrystallized in DMF to yield yellow crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H9N3O2S
Mr 331.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.915 (7), 12.1641 (10), 17.255 (14)
α, β, γ (°) 69.51 (2), 79.50 (2), 82.93 (3)
V3) 1527.0 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.22 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 9065, 6901, 4330
Rint 0.078
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.183, 1.02
No. of reflections 6901
No. of parameters 433
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.36
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

4-[2-(1,3-Dioxoisoindolin-2-yl)-1,3-thiazol-4-yl]benzonitrile top
Crystal data top
C18H9N3O2SZ = 4
Mr = 331.34F(000) = 680
Triclinic, P1Dx = 1.441 Mg m3
a = 7.915 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1641 (10) ÅCell parameters from 5982 reflections
c = 17.255 (14) Åθ = 3.3–26.7°
α = 69.51 (2)°µ = 0.23 mm1
β = 79.50 (2)°T = 296 K
γ = 82.93 (3)°Block, yellow
V = 1527.0 (19) Å30.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.078
Radiation source: fine-focus sealed tubeθmax = 27.6°, θmin = 3.1°
ω scansh = 1010
9065 measured reflectionsk = 1415
6901 independent reflectionsl = 1022
4330 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0829P)2 + 0.1516P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6901 reflectionsΔρmax = 0.23 e Å3
433 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38921 (8)0.78889 (6)0.39010 (4)0.0571 (2)
O20.4162 (2)0.76188 (17)0.54965 (12)0.0647 (5)
O30.8033 (2)0.48462 (17)0.48373 (12)0.0654 (5)
N10.6111 (2)0.63277 (17)0.35764 (12)0.0464 (5)
N20.5965 (2)0.63508 (17)0.49470 (12)0.0438 (4)
N30.7847 (4)0.4946 (3)0.04423 (19)0.1041 (11)
C10.7234 (3)0.5651 (2)0.21528 (16)0.0545 (6)
H10.77760.53240.26250.065*
C20.7744 (4)0.5259 (3)0.14837 (16)0.0612 (7)
H20.86230.46720.15050.073*
C30.6945 (4)0.5743 (3)0.07798 (16)0.0581 (7)
C40.5645 (4)0.6618 (3)0.07480 (17)0.0614 (7)
H40.51110.69440.02730.074*
C50.5139 (4)0.7006 (2)0.14184 (16)0.0586 (7)
H50.42640.75970.13930.070*
C60.5924 (3)0.6524 (2)0.21352 (14)0.0467 (5)
C70.5361 (3)0.6902 (2)0.28647 (14)0.0448 (5)
C80.4156 (3)0.7758 (2)0.29379 (16)0.0551 (6)
H80.35420.82200.25130.066*
C90.5460 (3)0.6755 (2)0.41544 (14)0.0428 (5)
C100.5266 (3)0.6826 (2)0.55746 (15)0.0477 (5)
C110.6149 (3)0.6191 (2)0.62956 (15)0.0478 (6)
C120.5935 (4)0.6341 (3)0.70662 (16)0.0595 (7)
H120.51120.68850.72020.071*
C130.6988 (4)0.5651 (3)0.76203 (17)0.0662 (8)
H130.68930.57370.81420.079*
C140.8181 (4)0.4836 (3)0.74229 (18)0.0670 (8)
H140.88730.43800.78160.080*
C150.8387 (3)0.4669 (2)0.66527 (17)0.0600 (7)
H150.91910.41110.65230.072*
C160.7339 (3)0.5375 (2)0.60933 (15)0.0457 (5)
C170.7246 (3)0.5424 (2)0.52334 (15)0.0472 (5)
C180.7454 (4)0.5311 (3)0.00934 (18)0.0742 (9)
S1'0.37678 (10)0.06821 (7)0.74956 (5)0.0658 (2)
O2'0.4044 (3)0.0300 (2)0.89536 (15)0.0899 (7)
O3'0.0673 (3)0.1952 (2)0.79880 (13)0.0790 (6)
N1'0.1656 (2)0.10281 (18)0.68470 (12)0.0479 (5)
N2'0.1870 (2)0.08009 (18)0.82460 (13)0.0493 (5)
N3'0.0485 (4)0.2563 (3)0.24512 (17)0.0912 (9)
C1'0.0585 (3)0.1964 (2)0.52348 (16)0.0480 (5)
H1'0.02140.23430.56250.058*
C2'0.0002 (3)0.2396 (2)0.44717 (16)0.0517 (6)
H2'0.07550.30600.43490.062*
C3'0.0556 (3)0.1831 (2)0.38873 (16)0.0497 (6)
C4'0.1694 (3)0.0849 (2)0.40719 (16)0.0576 (6)
H4'0.20760.04770.36780.069*
C5'0.2258 (3)0.0424 (2)0.48295 (16)0.0548 (6)
H5'0.30160.02400.49490.066*
C6'0.1714 (3)0.0974 (2)0.54304 (15)0.0449 (5)
C7'0.2291 (3)0.0505 (2)0.62486 (15)0.0461 (5)
C8'0.3429 (3)0.0425 (2)0.65024 (17)0.0597 (7)
H8'0.39600.08700.61730.072*
C9'0.2308 (3)0.0485 (2)0.75202 (15)0.0473 (5)
C10'0.2784 (3)0.0368 (3)0.89290 (17)0.0601 (7)
C11'0.1890 (3)0.0870 (3)0.95609 (16)0.0561 (6)
C12'0.2259 (4)0.0738 (3)1.03407 (19)0.0738 (9)
H12'0.31980.02601.05500.089*
C13'0.1183 (5)0.1343 (3)1.07954 (19)0.0792 (9)
H13'0.14000.12671.13240.095*
C14'0.0192 (5)0.2052 (3)1.04946 (19)0.0765 (9)
H14'0.08890.24521.08180.092*
C15'0.0558 (4)0.2181 (3)0.97160 (18)0.0682 (8)
H15'0.14950.26620.95070.082*
C16'0.0499 (3)0.1579 (2)0.92597 (15)0.0528 (6)
C17'0.0407 (3)0.1526 (2)0.84234 (16)0.0541 (6)
C18'0.0037 (4)0.2253 (2)0.30838 (19)0.0634 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0587 (4)0.0613 (4)0.0521 (4)0.0151 (3)0.0127 (3)0.0241 (3)
O20.0701 (11)0.0740 (13)0.0571 (12)0.0228 (10)0.0165 (9)0.0364 (10)
O30.0708 (12)0.0683 (12)0.0598 (12)0.0211 (10)0.0134 (10)0.0317 (10)
N10.0489 (11)0.0513 (11)0.0420 (11)0.0000 (9)0.0085 (9)0.0194 (9)
N20.0465 (10)0.0470 (11)0.0399 (10)0.0023 (8)0.0081 (8)0.0179 (9)
N30.131 (3)0.128 (3)0.0669 (18)0.038 (2)0.0350 (18)0.0558 (19)
C10.0574 (14)0.0671 (16)0.0398 (13)0.0062 (12)0.0135 (11)0.0193 (12)
C20.0624 (16)0.0743 (18)0.0465 (15)0.0122 (14)0.0104 (12)0.0242 (14)
C30.0672 (16)0.0701 (17)0.0401 (14)0.0036 (14)0.0082 (12)0.0225 (13)
C40.0690 (17)0.0734 (19)0.0437 (15)0.0025 (14)0.0187 (13)0.0194 (13)
C50.0680 (16)0.0619 (16)0.0484 (15)0.0081 (13)0.0182 (13)0.0210 (13)
C60.0498 (13)0.0526 (14)0.0380 (12)0.0076 (11)0.0083 (10)0.0131 (11)
C70.0473 (12)0.0498 (13)0.0391 (12)0.0062 (10)0.0064 (10)0.0160 (11)
C80.0599 (15)0.0584 (15)0.0458 (14)0.0052 (12)0.0161 (12)0.0150 (12)
C90.0448 (12)0.0451 (12)0.0401 (12)0.0030 (10)0.0063 (10)0.0162 (10)
C100.0484 (12)0.0521 (14)0.0467 (14)0.0027 (11)0.0087 (11)0.0229 (11)
C110.0526 (13)0.0491 (13)0.0426 (13)0.0079 (11)0.0065 (11)0.0153 (11)
C120.0742 (17)0.0638 (16)0.0431 (14)0.0063 (14)0.0049 (13)0.0225 (13)
C130.085 (2)0.0716 (19)0.0431 (15)0.0184 (16)0.0138 (14)0.0137 (14)
C140.0723 (18)0.0733 (19)0.0497 (16)0.0117 (15)0.0233 (14)0.0041 (14)
C150.0589 (15)0.0610 (17)0.0550 (16)0.0002 (13)0.0147 (13)0.0113 (13)
C160.0459 (12)0.0478 (13)0.0430 (13)0.0047 (10)0.0089 (10)0.0132 (11)
C170.0458 (12)0.0448 (13)0.0497 (14)0.0022 (10)0.0080 (11)0.0157 (11)
C180.092 (2)0.088 (2)0.0480 (16)0.0144 (18)0.0217 (15)0.0300 (16)
S1'0.0709 (4)0.0651 (5)0.0625 (5)0.0207 (4)0.0220 (4)0.0252 (4)
O2'0.0619 (12)0.137 (2)0.0828 (16)0.0369 (13)0.0346 (11)0.0536 (15)
O3'0.0830 (13)0.0973 (16)0.0602 (13)0.0427 (12)0.0321 (11)0.0362 (12)
N1'0.0455 (10)0.0549 (12)0.0451 (12)0.0023 (9)0.0078 (9)0.0202 (10)
N2'0.0468 (10)0.0600 (13)0.0426 (11)0.0038 (9)0.0120 (9)0.0189 (10)
N3'0.123 (2)0.087 (2)0.0622 (18)0.0089 (18)0.0356 (17)0.0122 (15)
C1'0.0465 (12)0.0509 (14)0.0486 (14)0.0012 (10)0.0024 (11)0.0221 (11)
C2'0.0477 (13)0.0487 (14)0.0556 (15)0.0002 (11)0.0061 (11)0.0157 (12)
C3'0.0507 (13)0.0495 (14)0.0462 (14)0.0088 (11)0.0057 (11)0.0117 (11)
C4'0.0651 (16)0.0614 (16)0.0491 (15)0.0014 (13)0.0037 (12)0.0261 (13)
C5'0.0562 (14)0.0554 (15)0.0542 (15)0.0106 (12)0.0086 (12)0.0248 (13)
C6'0.0415 (11)0.0464 (13)0.0461 (13)0.0059 (10)0.0009 (10)0.0167 (11)
C7'0.0439 (12)0.0477 (13)0.0482 (14)0.0031 (10)0.0047 (10)0.0190 (11)
C8'0.0642 (16)0.0601 (16)0.0586 (17)0.0122 (13)0.0121 (13)0.0285 (14)
C9'0.0441 (12)0.0508 (14)0.0470 (14)0.0001 (10)0.0067 (11)0.0172 (11)
C10'0.0473 (14)0.0809 (19)0.0542 (16)0.0007 (13)0.0172 (12)0.0222 (14)
C11'0.0558 (14)0.0688 (17)0.0454 (14)0.0097 (13)0.0113 (12)0.0175 (13)
C12'0.0722 (18)0.099 (2)0.0525 (17)0.0070 (17)0.0211 (15)0.0222 (17)
C13'0.099 (2)0.099 (3)0.0463 (17)0.027 (2)0.0124 (17)0.0247 (17)
C14'0.099 (2)0.080 (2)0.0518 (18)0.0114 (19)0.0020 (17)0.0272 (16)
C15'0.0832 (19)0.0667 (18)0.0537 (17)0.0069 (15)0.0108 (15)0.0227 (14)
C16'0.0605 (15)0.0552 (15)0.0418 (14)0.0055 (12)0.0070 (11)0.0152 (12)
C17'0.0566 (14)0.0568 (15)0.0465 (14)0.0061 (12)0.0104 (12)0.0163 (12)
C18'0.0736 (18)0.0568 (16)0.0574 (18)0.0089 (14)0.0114 (15)0.0138 (14)
Geometric parameters (Å, º) top
S1—C81.698 (3)S1'—C8'1.697 (3)
S1—C91.728 (3)S1'—C9'1.724 (3)
O2—C101.207 (3)O2'—C10'1.204 (3)
O3—C171.193 (3)O3'—C17'1.190 (3)
N1—C91.281 (3)N1'—C9'1.284 (3)
N1—C71.383 (3)N1'—C7'1.384 (3)
N2—C91.397 (3)N2'—C10'1.404 (3)
N2—C101.398 (3)N2'—C9'1.408 (3)
N2—C171.433 (3)N2'—C17'1.421 (3)
N3—C181.138 (4)N3'—C18'1.131 (4)
C1—C21.375 (4)C1'—C2'1.378 (4)
C1—C61.386 (3)C1'—C6'1.387 (3)
C1—H10.9300C1'—H1'0.9300
C2—C31.382 (4)C2'—C3'1.389 (3)
C2—H20.9300C2'—H2'0.9300
C3—C41.380 (4)C3'—C4'1.384 (4)
C3—C181.432 (4)C3'—C18'1.444 (4)
C4—C51.374 (4)C4'—C5'1.363 (4)
C4—H40.9300C4'—H4'0.9300
C5—C61.394 (3)C5'—C6'1.400 (3)
C5—H50.9300C5'—H5'0.9300
C6—C71.465 (3)C6'—C7'1.461 (4)
C7—C81.346 (3)C7'—C8'1.353 (3)
C8—H80.9300C8'—H8'0.9300
C10—C111.464 (3)C10'—C11'1.463 (4)
C11—C161.374 (3)C11'—C16'1.374 (4)
C11—C121.382 (3)C11'—C12'1.380 (4)
C12—C131.367 (4)C12'—C13'1.374 (5)
C12—H120.9300C12'—H12'0.9300
C13—C141.372 (4)C13'—C14'1.363 (5)
C13—H130.9300C13'—H13'0.9300
C14—C151.391 (4)C14'—C15'1.377 (4)
C14—H140.9300C14'—H14'0.9300
C15—C161.376 (4)C15'—C16'1.367 (4)
C15—H150.9300C15'—H15'0.9300
C16—C171.479 (3)C16'—C17'1.482 (4)
C8—S1—C987.83 (12)C8'—S1'—C9'88.02 (12)
C9—N1—C7110.1 (2)C9'—N1'—C7'110.2 (2)
C9—N2—C10123.2 (2)C10'—N2'—C9'123.8 (2)
C9—N2—C17126.21 (19)C10'—N2'—C17'110.2 (2)
C10—N2—C17110.61 (19)C9'—N2'—C17'125.9 (2)
C2—C1—C6121.1 (2)C2'—C1'—C6'121.1 (2)
C2—C1—H1119.4C2'—C1'—H1'119.4
C6—C1—H1119.4C6'—C1'—H1'119.4
C1—C2—C3119.7 (3)C1'—C2'—C3'119.5 (2)
C1—C2—H2120.2C1'—C2'—H2'120.2
C3—C2—H2120.2C3'—C2'—H2'120.2
C4—C3—C2120.1 (2)C4'—C3'—C2'119.9 (2)
C4—C3—C18120.5 (2)C4'—C3'—C18'119.0 (2)
C2—C3—C18119.4 (3)C2'—C3'—C18'121.0 (2)
C5—C4—C3120.0 (2)C5'—C4'—C3'120.2 (2)
C5—C4—H4120.0C5'—C4'—H4'119.9
C3—C4—H4120.0C3'—C4'—H4'119.9
C4—C5—C6120.7 (3)C4'—C5'—C6'121.0 (2)
C4—C5—H5119.6C4'—C5'—H5'119.5
C6—C5—H5119.6C6'—C5'—H5'119.5
C1—C6—C5118.4 (2)C1'—C6'—C5'118.2 (2)
C1—C6—C7120.3 (2)C1'—C6'—C7'120.8 (2)
C5—C6—C7121.3 (2)C5'—C6'—C7'121.0 (2)
C8—C7—N1114.2 (2)C8'—C7'—N1'114.0 (2)
C8—C7—C6127.5 (2)C8'—C7'—C6'126.3 (2)
N1—C7—C6118.2 (2)N1'—C7'—C6'119.7 (2)
C7—C8—S1111.79 (19)C7'—C8'—S1'111.73 (19)
C7—C8—H8124.1C7'—C8'—H8'124.1
S1—C8—H8124.1S1'—C8'—H8'124.1
N1—C9—N2123.2 (2)N1'—C9'—N2'123.1 (2)
N1—C9—S1116.02 (18)N1'—C9'—S1'116.08 (18)
N2—C9—S1120.76 (16)N2'—C9'—S1'120.86 (18)
O2—C10—N2124.1 (2)O2'—C10'—N2'123.7 (3)
O2—C10—C11129.1 (2)O2'—C10'—C11'129.4 (3)
N2—C10—C11106.7 (2)N2'—C10'—C11'106.8 (2)
C16—C11—C12122.1 (2)C16'—C11'—C12'120.7 (3)
C16—C11—C10108.7 (2)C16'—C11'—C10'108.8 (2)
C12—C11—C10129.2 (2)C12'—C11'—C10'130.4 (3)
C13—C12—C11117.0 (3)C13'—C12'—C11'117.2 (3)
C13—C12—H12121.5C13'—C12'—H12'121.4
C11—C12—H12121.5C11'—C12'—H12'121.4
C12—C13—C14121.3 (3)C14'—C13'—C12'122.0 (3)
C12—C13—H13119.3C14'—C13'—H13'119.0
C14—C13—H13119.3C12'—C13'—H13'119.0
C13—C14—C15122.0 (3)C13'—C14'—C15'120.6 (3)
C13—C14—H14119.0C13'—C14'—H14'119.7
C15—C14—H14119.0C15'—C14'—H14'119.7
C16—C15—C14116.5 (3)C16'—C15'—C14'117.9 (3)
C16—C15—H15121.8C16'—C15'—H15'121.1
C14—C15—H15121.8C14'—C15'—H15'121.1
C11—C16—C15121.2 (2)C15'—C16'—C11'121.5 (3)
C11—C16—C17109.0 (2)C15'—C16'—C17'129.9 (3)
C15—C16—C17129.8 (2)C11'—C16'—C17'108.5 (2)
O3—C17—N2125.4 (2)O3'—C17'—N2'125.6 (2)
O3—C17—C16129.7 (2)O3'—C17'—C16'128.8 (2)
N2—C17—C16104.86 (19)N2'—C17'—C16'105.6 (2)
N3—C18—C3178.6 (4)N3'—C18'—C3'178.5 (3)
C6—C1—C2—C30.1 (4)C6'—C1'—C2'—C3'0.0 (4)
C1—C2—C3—C40.3 (4)C1'—C2'—C3'—C4'0.6 (4)
C1—C2—C3—C18178.5 (3)C1'—C2'—C3'—C18'179.5 (2)
C2—C3—C4—C50.3 (4)C2'—C3'—C4'—C5'0.8 (4)
C18—C3—C4—C5178.5 (3)C18'—C3'—C4'—C5'179.3 (2)
C3—C4—C5—C60.1 (4)C3'—C4'—C5'—C6'0.5 (4)
C2—C1—C6—C50.5 (4)C2'—C1'—C6'—C5'0.3 (4)
C2—C1—C6—C7178.0 (2)C2'—C1'—C6'—C7'178.4 (2)
C4—C5—C6—C10.5 (4)C4'—C5'—C6'—C1'0.1 (4)
C4—C5—C6—C7178.0 (2)C4'—C5'—C6'—C7'178.7 (2)
C9—N1—C7—C80.2 (3)C9'—N1'—C7'—C8'0.5 (3)
C9—N1—C7—C6179.2 (2)C9'—N1'—C7'—C6'179.6 (2)
C1—C6—C7—C8177.7 (2)C1'—C6'—C7'—C8'177.6 (2)
C5—C6—C7—C83.9 (4)C5'—C6'—C7'—C8'3.7 (4)
C1—C6—C7—N13.1 (3)C1'—C6'—C7'—N1'2.3 (3)
C5—C6—C7—N1175.4 (2)C5'—C6'—C7'—N1'176.4 (2)
N1—C7—C8—S10.1 (3)N1'—C7'—C8'—S1'0.4 (3)
C6—C7—C8—S1179.19 (19)C6'—C7'—C8'—S1'179.53 (19)
C9—S1—C8—C70.0 (2)C9'—S1'—C8'—C7'0.9 (2)
C7—N1—C9—N2180.0 (2)C7'—N1'—C9'—N2'178.4 (2)
C7—N1—C9—S10.2 (3)C7'—N1'—C9'—S1'1.2 (3)
C10—N2—C9—N1179.4 (2)C10'—N2'—C9'—N1'167.8 (2)
C17—N2—C9—N10.1 (4)C17'—N2'—C9'—N1'16.6 (4)
C10—N2—C9—S10.4 (3)C10'—N2'—C9'—S1'12.6 (3)
C17—N2—C9—S1179.84 (17)C17'—N2'—C9'—S1'162.98 (19)
C8—S1—C9—N10.1 (2)C8'—S1'—C9'—N1'1.2 (2)
C8—S1—C9—N2179.9 (2)C8'—S1'—C9'—N2'178.4 (2)
C9—N2—C10—O20.4 (4)C9'—N2'—C10'—O2'1.1 (4)
C17—N2—C10—O2179.9 (2)C17'—N2'—C10'—O2'177.3 (3)
C9—N2—C10—C11178.65 (19)C9'—N2'—C10'—C11'178.0 (2)
C17—N2—C10—C110.8 (3)C17'—N2'—C10'—C11'1.8 (3)
O2—C10—C11—C16178.6 (3)O2'—C10'—C11'—C16'179.3 (3)
N2—C10—C11—C160.4 (3)N2'—C10'—C11'—C16'0.3 (3)
O2—C10—C11—C120.2 (5)O2'—C10'—C11'—C12'1.7 (5)
N2—C10—C11—C12179.2 (2)N2'—C10'—C11'—C12'179.3 (3)
C16—C11—C12—C131.2 (4)C16'—C11'—C12'—C13'0.0 (4)
C10—C11—C12—C13177.5 (2)C10'—C11'—C12'—C13'179.0 (3)
C11—C12—C13—C141.1 (4)C11'—C12'—C13'—C14'0.3 (5)
C12—C13—C14—C150.2 (4)C12'—C13'—C14'—C15'0.4 (5)
C13—C14—C15—C160.5 (4)C13'—C14'—C15'—C16'0.1 (5)
C12—C11—C16—C150.4 (4)C14'—C15'—C16'—C11'0.2 (4)
C10—C11—C16—C15178.5 (2)C14'—C15'—C16'—C17'178.5 (3)
C12—C11—C16—C17179.6 (2)C12'—C11'—C16'—C15'0.3 (4)
C10—C11—C16—C171.5 (3)C10'—C11'—C16'—C15'178.9 (2)
C14—C15—C16—C110.5 (4)C12'—C11'—C16'—C17'178.7 (3)
C14—C15—C16—C17179.5 (2)C10'—C11'—C16'—C17'2.1 (3)
C9—N2—C17—O32.0 (4)C10'—N2'—C17'—O3'174.7 (3)
C10—N2—C17—O3178.5 (2)C9'—N2'—C17'—O3'1.4 (4)
C9—N2—C17—C16177.8 (2)C10'—N2'—C17'—C16'3.0 (3)
C10—N2—C17—C161.7 (2)C9'—N2'—C17'—C16'179.1 (2)
C11—C16—C17—O3178.3 (3)C15'—C16'—C17'—O3'4.4 (5)
C15—C16—C17—O31.8 (4)C11'—C16'—C17'—O3'174.5 (3)
C11—C16—C17—N21.9 (3)C15'—C16'—C17'—N2'178.0 (3)
C15—C16—C17—N2178.0 (2)C11'—C16'—C17'—N2'3.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N10.932.482.818 (4)102
C1—H1···N10.932.522.856 (4)101
C2—H2···N3i0.932.613.376 (4)141
C13—H13···N3ii0.932.513.324 (5)146
C5—H5···O2iii0.932.553.444 (3)161
C8—H8···O2iii0.932.483.346 (3)156
C12—H12···O2iv0.932.503.285 (4)143
C2—H2···O3v0.932.613.395 (3)142
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y1, z; (iv) x+1, y, z+2; (v) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: s_selvanayagam@rediffmail.com.

Acknowledgements

The authors are thankful for funding support from the Department of Biotechnology North East Collaboration (DBT NEC) Research Project, grant No. BT/252/NE/TBP/2011, New Delhi, India.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaravanan, K., Archana, K., Lakshmithendral, K., Kabilan, S. & Selvanayagam, S. (2016). IUCrData 1, x161053.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds