organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,7,12,14-Tetra­hydro-5,14:7,12-bis­­([1,2]benzeno)­penta­cene-6,13-diol di­methyl­formamide disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, USA, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, USA
*Correspondence e-mail: mn468@drexel.edu

Edited by M. Zeller, Purdue University, USA (Received 20 June 2016; accepted 11 July 2016; online 15 July 2016)

The crystal lattice of the title compound, C34H22O2·2C3H7NO, at 173 K has monoclinic (P21/n) symmetry. Mol­ecules are located on crystallographic centers of symmetry and have approximate non-crystallographic mmm symmetry, indicating that in solution the chemical and spectroscopic behavior would be that of a D2h mol­ecule. The compound has applications in gas-separation membranes fabricated from polymers of intrinsic microporosity (PIM). The compound is the product of reduction of the corresponding quinone by Na2S2O4 in DMF/NaHCO3.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pentiptycenes are a member of the iptycene family that possess a rigid, bulky, aromatic, π-electron-rich three-dimensional structure. In addition to various applications of pentiptycene in fluorescence and chemical sensing (Yang and Swager, 1998[Yang, J. S. & Swager, T. M. (1998). J. Am. Chem. Soc. 120, 11864-11873.]) and a light-driven mol­ecular brake (Sun et al., 2010[Sun, W. T., Huang, Y. T., Huang, G. J., Lu, H. F., Chao, I., Huang, S. L., Huang, S. J., Lin, Y. C., Ho, J. H. & Yang, J. S. (2010). Chem. Eur. J. 16, 11594-11604.]), pentiptycene-6,13-diol is currently used as a principal reactant for preparing polymers. Gong & Zhang (2011[Gong, F. & Zhang, S. (2011). J. Power Sources, 196, 9876-9883.]) synthesized poly(aryl­ene ether sulfone)s to fabricate highly conductive polymer electrolyte membranes for high temperature and low humidity conditions. Luo et al. (2015[Luo, S., Liu, Q., Zhang, B., Wiegand, J. R., Freeman, B. D. & Guo, R. (2015). J. Membr. Sci. 480, 20-30.], 2016[Luo, S., Wiegand, J. R., Kazanowska, B., Doherty, C. M., Konstas, K., Hill, A. J. & Guo, R. (2016). Macromolecules, 49, 3395-3405.]) have reported pentiptycene-based di­amines for the preparation of polyimides with controlled mol­ecular cavities appropriate for gas separation with PIM membranes.

In the title compound, C34H22O2·2C3H7NO, an inversion center (−x, −y, −z) is present between atoms C1, C2 and C3 of the central hydro­quinone ring, which yields a C22H22N2O substructure and a solvent mol­ecule, C2H3O2, in the asymmetric unit, generating a rigid tweezer-like mol­ecule (Fig. 1[link]). The dihedral angle between the terminal benzene rings in each of the two symmetry-related sets is 64.9 (9)°. The three six-membered carbon rings fused between the benzene rings and the central hydro­quinone ring for both symmetry sets adopt a boat conformation (puckering parameters Q, θ, and φ = 0.7976 (15) Å, 90.3 (11)°, 299.85 (11)° for C2/C3/C4/C5/C10/C11; 0.8113 (15) Å, 90.36 (11)°, 120.38° for C2/C3/C4/C17/C12/C11; and 0.8238 (15) Å, 89.91 (10), 0.20 (11) for C4/C5/C10C11/C12/C17, respectively. Bond lengths are within normal ranges.

[Figure 1]
Figure 1
The title compound, showing its relationship to the two DMF solvent mol­ecules. Displacement ellipsoids are drawn at the 50% probability level. H atoms are rendered as spheres of arbitrary radius. The complementary atoms are generated by the symmetry operation (−x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]).

In the crystal, two DMF mol­ecules solvate the compound with O—H⋯O hydrogen bonds and weak C—H⋯O inter­molecular inter­actions (Table 1[link]). On each half of the title compound these inter­actions involve the oxygen atom from DMF inter­acting with the OH group and a CH unit from a boat-formed six-membered carbon ring of the compound (Fig. 2[link]). In the lattice, the central symmetry-related hydro­quinone rings are aligned along the a axis, as two stack orientations, with an angle of 56 (1)° between them (Fig 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1S 0.84 1.86 2.6818 (16) 164
C6—H6⋯O1i 0.95 2.70 3.4912 (19) 141
C11—H11⋯O1S 1.00 2.42 3.2771 (18) 143
Symmetry code: (i) x+1, y, z.
[Figure 2]
Figure 2
The crystal packing of the compound along the c-axis direction. Hydrogen bonds are shown as dashed lines. Hydrogen bonds are formed between the O atom of DMF inter­acting with the OH group and C—H unit of the title compound.
[Figure 3]
Figure 3
A stick-structure view of the lattice along the a-axis direction (inverse stereo).

Some derivatives of this compound for which X-ray structures have previously been reported include bis­(tri­methyl­silylethyn­yl)pentiptycene (Yang & Swager, 1998[Yang, J. S. & Swager, T. M. (1998). J. Am. Chem. Soc. 120, 11864-11873.]). A long-chain ether derivative was reported (Yang et al., 2000a[Yang, J. S., Lee, C. C., Yau, S. L., Chang, C. C., Lee, C. C. & Leu, J. M. (2000a). J. Org. Chem. 65, 871-877.]), as well as an aryl­sulfonyl di­amide derivative of the title compound (Yang et al., 2000b[Yang, J. S., Liu, C. & Lee, G. (2000b). Tetrahedron Lett. 41, 7911-7915.]), while a 4′-carb­oxy­benzyl ether derivative was described by Crane et al. (2013[Crane, A. K., Wong, E. Y. L. & MacLachlan, M. J. (2013). CrystEngComm, 15, 9811-9819.]).

Synthesis and crystallization

The title pentiptycene-6,13-diol was prepared using a modified version of the Yang et al. (2000a[Yang, J. S., Lee, C. C., Yau, S. L., Chang, C. C., Lee, C. C. & Leu, J. M. (2000a). J. Org. Chem. 65, 871-877.]) method (Fig. 4[link]). For 2.5 g (5.5 mmol) of pentiptycene quinone (Cao et al. 2009[Cao, J., Lu, H. Y. & Chen, C. F. (2009). Tetrahedron, 65, 8104-8112.]), 50 ml of DMF was used as the solvent, with 3.25 g (39 mmol) NaHCO3 and 3.25 g (19 mmol) Na2S2O4. The reaction was carried out at 100°C under N2. The total reaction time was adjusted to 16 h, with Na2S2O4 being added in four portions at 4 h inter­vals. The crude product, precipitated by the addition of water to the cooled solution, was filtered off, washed with water, and vacuum desiccated, yielding a straw-colored powder (2.45 g, 97%), which was recrystallized from DMF.

[Figure 4]
Figure 4
Synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C34H22O2·2C3H7NO
Mr 608.71
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 9.3621 (2), 11.3559 (2), 15.1920 (3)
β (°) 98.0838 (18)
V3) 1599.10 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.65
Crystal size (mm) 0.22 × 0.16 × 0.14
 
Data collection
Diffractometer Rigaku Oxford Diffraction EOS Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.690, 0.930
No. of measured, independent and observed [I > 2σ(I)] reflections 5606, 3057, 2694
Rint 0.041
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.144, 1.04
No. of reflections 3057
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.24
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5,7,12,14-Tetrahydro-5,14:7,12-bis([1,2]benzeno)pentacene-6,13-diol dimethylformamide disolvate top
Crystal data top
C34H22O2·2C3H7NOF(000) = 644
Mr = 608.71Dx = 1.264 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.3621 (2) ÅCell parameters from 2642 reflections
b = 11.3559 (2) Åθ = 3.9–71.4°
c = 15.1920 (3) ŵ = 0.65 mm1
β = 98.0838 (18)°T = 173 K
V = 1599.10 (6) Å3Prism, clear yellow
Z = 20.22 × 0.16 × 0.14 mm
Data collection top
Rigaku Oxford Diffraction EOS Gemini
diffractometer
3057 independent reflections
Radiation source: Enhance (Cu) X-ray Source2694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.0416 pixels mm-1θmax = 71.4°, θmin = 4.9°
ω scansh = 911
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 138
Tmin = 0.690, Tmax = 0.930l = 1818
5606 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0825P)2 + 0.2964P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3057 reflectionsΔρmax = 0.33 e Å3
212 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (8)
Special details top

Experimental. CrysAlisPro (Agilent Technologies, 2014) Version 1.171.37.35 (release 13-08-2014 CrysAlis171 .NET) (compiled Aug 13 2014,18:06:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26816 (10)0.14464 (9)0.52443 (7)0.0248 (3)
H10.28850.18820.56910.037*
O1S0.27960 (13)0.29190 (12)0.66325 (9)0.0421 (3)
N1S0.12086 (14)0.38670 (12)0.73798 (9)0.0300 (3)
C10.38466 (14)0.07611 (12)0.51417 (8)0.0183 (3)
C1S0.15856 (17)0.30504 (14)0.68404 (11)0.0300 (4)
H1S0.08570.25170.65910.036*
C20.52795 (14)0.10760 (12)0.54195 (8)0.0187 (3)
C2S0.2248 (2)0.4717 (2)0.77894 (15)0.0579 (6)
H2SA0.25350.45100.84160.087*
H2SB0.18130.55040.77500.087*
H2SC0.30990.47130.74800.087*
C30.64047 (14)0.03218 (13)0.52840 (9)0.0189 (3)
C3S0.0241 (2)0.39602 (19)0.75999 (17)0.0535 (6)
H3SA0.06500.47260.74030.080*
H3SB0.02150.38880.82450.080*
H3SC0.08390.33300.73010.080*
C40.78952 (14)0.08027 (13)0.56470 (9)0.0218 (3)
H40.86970.02550.55560.026*
C50.80135 (15)0.20036 (13)0.52093 (9)0.0222 (3)
C60.91058 (17)0.23797 (15)0.47492 (11)0.0306 (4)
H60.98670.18620.46550.037*
C70.9069 (2)0.35308 (17)0.44255 (12)0.0400 (4)
H70.98130.37990.41090.048*
C80.7963 (2)0.42845 (16)0.45601 (12)0.0379 (4)
H80.79540.50680.43400.045*
C90.68584 (17)0.38998 (14)0.50192 (10)0.0278 (4)
H90.60940.44170.51090.033*
C100.68865 (14)0.27602 (13)0.53422 (9)0.0211 (3)
C110.58057 (15)0.22199 (12)0.58893 (9)0.0206 (3)
H110.50030.27680.59800.025*
C120.67140 (15)0.18401 (13)0.67575 (9)0.0232 (3)
C130.65195 (18)0.21928 (15)0.76050 (10)0.0321 (4)
H130.57440.26990.76930.038*
C140.7483 (2)0.17921 (19)0.83278 (11)0.0436 (5)
H140.73750.20370.89130.052*
C150.8586 (2)0.1045 (2)0.81966 (11)0.0469 (5)
H150.92350.07780.86940.056*
C160.87715 (18)0.06715 (16)0.73443 (11)0.0351 (4)
H160.95300.01450.72600.042*
C170.78356 (15)0.10789 (13)0.66261 (10)0.0241 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0166 (5)0.0267 (6)0.0313 (6)0.0050 (4)0.0045 (4)0.0052 (4)
O1S0.0316 (7)0.0533 (8)0.0444 (7)0.0065 (6)0.0156 (5)0.0142 (6)
N1S0.0257 (7)0.0310 (7)0.0361 (7)0.0025 (5)0.0138 (6)0.0064 (6)
C10.0142 (6)0.0221 (7)0.0193 (6)0.0025 (5)0.0043 (5)0.0013 (5)
C1S0.0285 (8)0.0279 (8)0.0349 (8)0.0004 (6)0.0090 (6)0.0053 (6)
C20.0178 (7)0.0213 (7)0.0174 (6)0.0006 (5)0.0035 (5)0.0002 (5)
C2S0.0451 (11)0.0764 (16)0.0556 (12)0.0217 (11)0.0185 (9)0.0386 (11)
C30.0134 (6)0.0246 (7)0.0189 (6)0.0005 (5)0.0027 (5)0.0018 (5)
C3S0.0345 (10)0.0454 (11)0.0881 (16)0.0054 (9)0.0344 (10)0.0184 (11)
C40.0137 (7)0.0231 (7)0.0282 (7)0.0000 (5)0.0016 (5)0.0020 (5)
C50.0176 (7)0.0269 (7)0.0221 (7)0.0032 (5)0.0030 (5)0.0018 (5)
C60.0224 (7)0.0357 (9)0.0359 (8)0.0040 (7)0.0115 (6)0.0047 (7)
C70.0385 (10)0.0429 (10)0.0428 (9)0.0094 (8)0.0200 (8)0.0041 (8)
C80.0436 (10)0.0315 (9)0.0404 (9)0.0047 (8)0.0121 (8)0.0088 (7)
C90.0269 (8)0.0262 (8)0.0296 (8)0.0003 (6)0.0016 (6)0.0006 (6)
C100.0182 (7)0.0254 (7)0.0197 (6)0.0023 (5)0.0029 (5)0.0030 (5)
C110.0174 (7)0.0228 (7)0.0224 (7)0.0004 (5)0.0051 (5)0.0033 (5)
C120.0219 (7)0.0260 (7)0.0215 (7)0.0086 (6)0.0028 (5)0.0019 (5)
C130.0352 (9)0.0376 (9)0.0247 (8)0.0153 (7)0.0089 (6)0.0067 (6)
C140.0503 (11)0.0587 (12)0.0218 (8)0.0237 (10)0.0045 (7)0.0029 (7)
C150.0464 (11)0.0636 (13)0.0257 (9)0.0191 (10)0.0125 (7)0.0141 (8)
C160.0269 (8)0.0367 (9)0.0383 (9)0.0061 (7)0.0073 (7)0.0074 (7)
C170.0198 (7)0.0259 (7)0.0255 (7)0.0075 (6)0.0003 (5)0.0017 (6)
Geometric parameters (Å, º) top
O1—H10.8400C5—C101.397 (2)
O1—C11.3665 (16)C6—H60.9500
O1S—C1S1.2275 (19)C6—C71.395 (2)
N1S—C1S1.318 (2)C7—H70.9500
N1S—C2S1.448 (2)C7—C81.381 (3)
N1S—C3S1.446 (2)C8—H80.9500
C1—C21.3951 (19)C8—C91.396 (2)
C1—C3i1.3939 (19)C9—H90.9500
C1S—H1S0.9500C9—C101.383 (2)
C2—C31.3951 (19)C10—C111.5257 (18)
C2—C111.5299 (18)C11—H111.0000
C2S—H2SA0.9800C11—C121.5275 (19)
C2S—H2SB0.9800C12—C131.385 (2)
C2S—H2SC0.9800C12—C171.396 (2)
C3—C1i1.3939 (19)C13—H130.9500
C3—C41.5275 (18)C13—C141.396 (3)
C3S—H3SA0.9800C14—H140.9500
C3S—H3SB0.9800C14—C151.373 (3)
C3S—H3SC0.9800C15—H150.9500
C4—H41.0000C15—C161.396 (3)
C4—C51.528 (2)C16—H160.9500
C4—C171.529 (2)C16—C171.380 (2)
C5—C61.385 (2)
C1—O1—H1109.5C5—C6—C7118.92 (15)
C1S—N1S—C2S120.93 (14)C7—C6—H6120.5
C1S—N1S—C3S122.50 (15)C6—C7—H7119.7
C3S—N1S—C2S116.58 (15)C8—C7—C6120.68 (15)
O1—C1—C2124.64 (13)C8—C7—H7119.7
O1—C1—C3i118.03 (12)C7—C8—H8119.9
C3i—C1—C2117.31 (12)C7—C8—C9120.24 (16)
O1S—C1S—N1S125.67 (15)C9—C8—H8119.9
O1S—C1S—H1S117.2C8—C9—H9120.3
N1S—C1S—H1S117.2C10—C9—C8119.44 (15)
C1—C2—C11126.27 (12)C10—C9—H9120.3
C3—C2—C1120.79 (13)C5—C10—C11113.80 (13)
C3—C2—C11112.94 (12)C9—C10—C5120.08 (13)
N1S—C2S—H2SA109.5C9—C10—C11126.06 (13)
N1S—C2S—H2SB109.5C2—C11—H11113.2
N1S—C2S—H2SC109.5C10—C11—C2106.38 (11)
H2SA—C2S—H2SB109.5C10—C11—H11113.2
H2SA—C2S—H2SC109.5C10—C11—C12104.63 (11)
H2SB—C2S—H2SC109.5C12—C11—C2105.47 (11)
C1i—C3—C2121.89 (12)C12—C11—H11113.2
C1i—C3—C4124.68 (12)C13—C12—C11126.24 (14)
C2—C3—C4113.43 (12)C13—C12—C17120.79 (14)
N1S—C3S—H3SA109.5C17—C12—C11112.96 (12)
N1S—C3S—H3SB109.5C12—C13—H13120.6
N1S—C3S—H3SC109.5C12—C13—C14118.84 (17)
H3SA—C3S—H3SB109.5C14—C13—H13120.6
H3SA—C3S—H3SC109.5C13—C14—H14119.9
H3SB—C3S—H3SC109.5C15—C14—C13120.23 (16)
C3—C4—H4113.2C15—C14—H14119.9
C3—C4—C5106.28 (11)C14—C15—H15119.4
C3—C4—C17105.55 (11)C14—C15—C16121.11 (16)
C5—C4—H4113.2C16—C15—H15119.4
C5—C4—C17104.78 (11)C15—C16—H16120.5
C17—C4—H4113.2C17—C16—C15118.91 (17)
C6—C5—C4126.78 (13)C17—C16—H16120.5
C6—C5—C10120.63 (14)C12—C17—C4113.40 (12)
C10—C5—C4112.55 (12)C16—C17—C4126.49 (15)
C5—C6—H6120.5C16—C17—C12120.10 (14)
O1—C1—C2—C3179.72 (12)C5—C10—C11—C255.02 (15)
O1—C1—C2—C110.6 (2)C5—C10—C11—C1256.33 (15)
C1—C2—C3—C1i0.9 (2)C6—C5—C10—C90.5 (2)
C1—C2—C3—C4178.88 (12)C6—C5—C10—C11177.95 (13)
C1—C2—C11—C10126.00 (14)C6—C7—C8—C90.4 (3)
C1—C2—C11—C12123.23 (14)C7—C8—C9—C100.4 (3)
C1i—C3—C4—C5124.20 (14)C8—C9—C10—C50.0 (2)
C1i—C3—C4—C17124.87 (14)C8—C9—C10—C11177.18 (14)
C2—C3—C4—C555.99 (15)C9—C10—C11—C2127.69 (14)
C2—C3—C4—C1754.95 (15)C9—C10—C11—C12120.96 (15)
C2—C11—C12—C13125.00 (15)C10—C5—C6—C70.5 (2)
C2—C11—C12—C1755.92 (15)C10—C11—C12—C13122.99 (15)
C2S—N1S—C1S—O1S0.1 (3)C10—C11—C12—C1756.08 (15)
C3i—C1—C2—C30.9 (2)C11—C2—C3—C1i179.33 (12)
C3i—C1—C2—C11179.41 (12)C11—C2—C3—C40.85 (16)
C3—C2—C11—C1054.29 (15)C11—C12—C13—C14177.77 (14)
C3—C2—C11—C1256.48 (14)C11—C12—C17—C40.02 (17)
C3—C4—C5—C6126.94 (15)C11—C12—C17—C16178.85 (13)
C3—C4—C5—C1055.23 (15)C12—C13—C14—C151.1 (3)
C3—C4—C17—C1255.49 (15)C13—C12—C17—C4179.11 (13)
C3—C4—C17—C16125.76 (15)C13—C12—C17—C160.3 (2)
C3S—N1S—C1S—O1S179.44 (19)C13—C14—C15—C160.0 (3)
C4—C5—C6—C7177.19 (14)C14—C15—C16—C170.9 (3)
C4—C5—C10—C9177.50 (12)C15—C16—C17—C4177.86 (15)
C4—C5—C10—C110.03 (16)C15—C16—C17—C120.8 (2)
C5—C4—C17—C1256.50 (15)C17—C4—C5—C6121.59 (15)
C5—C4—C17—C16122.25 (16)C17—C4—C5—C1056.24 (14)
C5—C6—C7—C80.1 (3)C17—C12—C13—C141.2 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1S0.841.862.6818 (16)164
C6—H6···O1ii0.952.703.4912 (19)141
C11—H11···O1S1.002.423.2771 (18)143
Symmetry code: (ii) x+1, y, z.
 

Acknowledgements

MN and AWA thank the College of Arts and Sciences of Drexel University for support. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer. AAS and MS acknowledge support from the NSF under grant CBET-1160169. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationCao, J., Lu, H. Y. & Chen, C. F. (2009). Tetrahedron, 65, 8104–8112.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrane, A. K., Wong, E. Y. L. & MacLachlan, M. J. (2013). CrystEngComm, 15, 9811–9819.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGong, F. & Zhang, S. (2011). J. Power Sources, 196, 9876–9883.  Web of Science CrossRef CAS Google Scholar
First citationLuo, S., Liu, Q., Zhang, B., Wiegand, J. R., Freeman, B. D. & Guo, R. (2015). J. Membr. Sci. 480, 20–30.  Web of Science CrossRef CAS Google Scholar
First citationLuo, S., Wiegand, J. R., Kazanowska, B., Doherty, C. M., Konstas, K., Hill, A. J. & Guo, R. (2016). Macromolecules, 49, 3395–3405.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, W. T., Huang, Y. T., Huang, G. J., Lu, H. F., Chao, I., Huang, S. L., Huang, S. J., Lin, Y. C., Ho, J. H. & Yang, J. S. (2010). Chem. Eur. J. 16, 11594–11604.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, J. S., Lee, C. C., Yau, S. L., Chang, C. C., Lee, C. C. & Leu, J. M. (2000a). J. Org. Chem. 65, 871–877.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, J. S., Liu, C. & Lee, G. (2000b). Tetrahedron Lett. 41, 7911–7915.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, J. S. & Swager, T. M. (1998). J. Am. Chem. Soc. 120, 11864–11873.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds