organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(3S,4S)-4-Phenyl-1,5-bis­­(prop-2-en-1-yl)-3-(prop-2-en-1-yl­­oxy)-2,3,4,5-tetra­hydro-1H-1,5-benzo­diazepin-2-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence, Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: rida.m.b@hotmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 1 July 2016; accepted 19 July 2016; online 29 July 2016)

In the title compound, C24H26N2O2, the dihedral angle between the benzene rings is 45.69 (7)°. In the crystal, the mol­ecules form helical supra­molecular chains running parallel to the b axis via weak C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,5-Benzodiazepine derivatives have been used as therapeutics for viral infection and cardiovascular disorder (Jacob et al., 2011[Jacob, R. G., Radatz, C. S., Rodrigues, M. B., Alves, D., Perin, G., Lenardão, E. J. L. & Savegnago, L. (2011). Heteroat. Chem. 22, 180-185.]; Maleki et al., 2014[Maleki, A., Ghamari, N. M. & Kamalzare, M. (2014). RSC Adv. 4, 9416-9423.]). They are active against peptide hormones (Werner et al., 1990[Werner, W., Baumgart, J., Burckhardt, G., Fleck, W. F., Geller, K., Gutsche, W., Hanschmann, H., Messerschmidt, A., Römer, W., Tresselt, D. & Löber, G. (1990). Biophys. Chem. 35, 271-285. ]) and potassium blockers (Claremon et al., 1996[Claremon, D. A., Liverton, N., Selnick, H. G. & Smith, G. R. (1996). PCT Int. Appl. WO 9640653.1074.]). They are also employed as inter­mediates for the synthesis of several heterocyclic compounds (Minnih et al., 2014[Minnih, M. S., Kandri Rodi, Y. & Essassi, E. M. (2014). J. Mar. Chim. Heterocycl. 13, 1-24.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

In the title mol­ecule (Fig. 1[link]), the dihedral angle between the C1–C6 and C10–C15 rings is 45.69 (7)°. Analysis of the conformation of the seven-membered ring yielded puckering parameters Q(2) = 1.034 (2) Å, φ(2) = 227.0 (1)°, Q(3) = 0.174 (2) Å and φ(3) = 1.3 (6)°. In the crystal, the mol­ecules form supra­molecular helical chains parallel to the b axis through C22—H22A⋯O1(−x + 1, y + [{1\over 2}], −z) hydrogen bonds (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22A⋯O1i 0.99 2.41 3.378 (2) 165
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z].
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
Packing viewed along the a axis with C—H⋯O hydrogen bonds shown as dashed lines.

Synthesis and crystallization

To a solution of 3-hy­droxy-4-phenyl-4,5-di­hydro-1H-1,5-benzodiazepin-2(3H)-one (1 g, 3.5 mmol) in DMF (20 ml) were added allyl bromide (0.5 g. 10.5 mmol), potassium carbonate (1 g, 7.4 mmol) and a catalytic qu­antity of tetra-n-butyl ammonium bromide. The mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue was recrystallized from ethanol solution to afford the compound as colorless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H26N2O2
Mr 374.47
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 9.6138 (2), 8.8891 (2), 11.7292 (3)
β (°) 97.127 (1)
V3) 994.61 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.63
Crystal size (mm) 0.21 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.84, 0.90
No. of measured, independent and observed [I > 2σ(I)] reflections 9888, 3881, 3744
Rint 0.029
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.05
No. of reflections 3881
No. of parameters 254
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.21
Absolute structure Flack x determined using 1608 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (8)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(3S,4S)-4-Phenyl-1,5-bis(prop-2-en-1-yl)-3-(prop-2-en-1-yloxy)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one top
Crystal data top
C24H26N2O2F(000) = 400
Mr = 374.47Dx = 1.250 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 9.6138 (2) ÅCell parameters from 9162 reflections
b = 8.8891 (2) Åθ = 3.8–74.3°
c = 11.7292 (3) ŵ = 0.63 mm1
β = 97.127 (1)°T = 150 K
V = 994.61 (4) Å3Block, colourless
Z = 20.21 × 0.15 × 0.14 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3881 independent reflections
Radiation source: INCOATEC IµS micro–focus source3744 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4167 pixels mm-1θmax = 74.3°, θmin = 3.8°
ω scansh = 1110
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1111
Tmin = 0.84, Tmax = 0.90l = 1414
9888 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.1749P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.18 e Å3
3881 reflectionsΔρmin = 0.21 e Å3
254 parametersExtinction correction: SHELXL2014 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0076 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1608 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36677 (15)0.28288 (17)0.02270 (11)0.0310 (3)
O20.64430 (14)0.29097 (15)0.10026 (11)0.0274 (3)
N10.30144 (16)0.32889 (18)0.19803 (13)0.0256 (3)
N20.45776 (15)0.59426 (16)0.22157 (12)0.0216 (3)
C10.40506 (18)0.5341 (2)0.31988 (15)0.0223 (4)
C20.4206 (2)0.6060 (2)0.42694 (15)0.0261 (4)
H20.47030.69840.43630.031*
C30.3642 (2)0.5435 (2)0.51948 (16)0.0302 (4)
H30.37510.59380.59150.036*
C40.2924 (2)0.4087 (2)0.50753 (17)0.0305 (4)
H40.25430.36620.57120.037*
C50.2763 (2)0.3357 (2)0.40224 (16)0.0283 (4)
H50.22850.24210.39430.034*
C60.32954 (19)0.3986 (2)0.30810 (16)0.0239 (4)
C70.39812 (19)0.31974 (19)0.12316 (15)0.0241 (4)
C80.55078 (19)0.3467 (2)0.17397 (14)0.0225 (4)
H80.56950.29650.25060.027*
C90.58168 (18)0.51561 (19)0.18692 (14)0.0204 (3)
H90.59420.55370.10860.025*
C100.71810 (18)0.5486 (2)0.26366 (15)0.0231 (4)
C110.8169 (2)0.6427 (2)0.22330 (17)0.0289 (4)
H110.79910.68380.14810.035*
C120.9414 (2)0.6774 (3)0.2916 (2)0.0380 (5)
H121.00700.74340.26350.046*
C130.9702 (2)0.6164 (3)0.4004 (2)0.0387 (5)
H131.05590.63900.44670.046*
C140.8730 (2)0.5220 (3)0.44140 (18)0.0345 (5)
H140.89260.47920.51590.041*
C150.7470 (2)0.4894 (2)0.37439 (16)0.0285 (4)
H150.68020.42640.40410.034*
C160.1552 (2)0.2936 (3)0.15412 (18)0.0337 (5)
H16A0.10360.27010.21990.040*
H16B0.15360.20250.10540.040*
C170.0813 (2)0.4166 (3)0.0863 (3)0.0510 (7)
H170.10210.51680.11090.061*
C180.0070 (4)0.3989 (4)0.0016 (4)0.0751 (10)
H18A0.03060.30040.02900.090*
H18B0.04980.48400.04040.090*
C190.6504 (2)0.1307 (2)0.09502 (18)0.0312 (4)
H19A0.67130.10060.01770.037*
H19B0.55720.08930.10550.037*
C200.7576 (2)0.0632 (2)0.18291 (18)0.0332 (4)
H200.76020.04350.18730.040*
C210.8487 (2)0.1365 (3)0.25474 (19)0.0368 (5)
H21A0.85030.24340.25380.044*
H21B0.91310.08280.30780.044*
C220.4695 (2)0.75892 (19)0.21535 (16)0.0253 (4)
H22A0.51470.78670.14690.030*
H22B0.52950.79610.28430.030*
C230.3291 (2)0.8316 (2)0.20827 (17)0.0316 (4)
H230.25970.79850.14880.038*
C240.2929 (3)0.9369 (3)0.2767 (2)0.0405 (5)
H24A0.35890.97340.33730.049*
H24B0.20060.97690.26570.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0383 (8)0.0314 (7)0.0217 (6)0.0001 (6)0.0022 (5)0.0053 (5)
O20.0341 (7)0.0220 (6)0.0272 (6)0.0019 (5)0.0080 (5)0.0026 (5)
N10.0256 (8)0.0280 (8)0.0224 (7)0.0060 (6)0.0001 (6)0.0007 (6)
N20.0243 (7)0.0201 (7)0.0205 (7)0.0002 (6)0.0029 (5)0.0004 (6)
C10.0214 (8)0.0247 (8)0.0205 (8)0.0013 (7)0.0017 (6)0.0014 (7)
C20.0273 (9)0.0274 (10)0.0231 (9)0.0005 (7)0.0008 (7)0.0016 (7)
C30.0335 (10)0.0356 (11)0.0214 (9)0.0044 (8)0.0030 (7)0.0020 (8)
C40.0330 (10)0.0345 (10)0.0249 (9)0.0054 (8)0.0069 (7)0.0067 (8)
C50.0296 (10)0.0275 (9)0.0279 (9)0.0014 (8)0.0048 (7)0.0051 (8)
C60.0236 (8)0.0255 (9)0.0223 (9)0.0002 (7)0.0016 (6)0.0010 (7)
C70.0296 (9)0.0187 (8)0.0232 (8)0.0003 (7)0.0004 (7)0.0006 (7)
C80.0276 (9)0.0208 (8)0.0190 (8)0.0004 (7)0.0022 (6)0.0008 (6)
C90.0238 (8)0.0196 (8)0.0178 (8)0.0006 (7)0.0028 (6)0.0002 (6)
C100.0241 (9)0.0213 (8)0.0235 (8)0.0031 (7)0.0014 (6)0.0024 (7)
C110.0268 (9)0.0300 (10)0.0300 (10)0.0010 (8)0.0036 (7)0.0009 (8)
C120.0261 (10)0.0431 (12)0.0446 (12)0.0044 (9)0.0035 (9)0.0022 (10)
C130.0274 (10)0.0430 (12)0.0426 (12)0.0030 (9)0.0083 (8)0.0104 (10)
C140.0374 (11)0.0343 (10)0.0291 (10)0.0075 (9)0.0066 (8)0.0032 (8)
C150.0322 (10)0.0272 (10)0.0247 (9)0.0025 (8)0.0016 (8)0.0001 (7)
C160.0285 (10)0.0393 (11)0.0317 (9)0.0131 (9)0.0026 (8)0.0041 (9)
C170.0320 (12)0.0336 (12)0.083 (2)0.0002 (10)0.0099 (12)0.0005 (12)
C180.0630 (18)0.0597 (19)0.092 (2)0.0049 (16)0.0326 (17)0.0235 (17)
C190.0375 (11)0.0224 (9)0.0334 (10)0.0036 (8)0.0030 (8)0.0060 (7)
C200.0363 (10)0.0280 (10)0.0366 (11)0.0059 (8)0.0096 (8)0.0040 (8)
C210.0321 (10)0.0410 (12)0.0378 (11)0.0059 (9)0.0063 (8)0.0041 (9)
C220.0301 (9)0.0188 (8)0.0267 (9)0.0014 (7)0.0022 (7)0.0000 (7)
C230.0324 (10)0.0271 (10)0.0340 (10)0.0037 (8)0.0014 (8)0.0005 (8)
C240.0416 (12)0.0348 (12)0.0447 (13)0.0094 (9)0.0044 (10)0.0033 (9)
Geometric parameters (Å, º) top
O1—C71.224 (2)C12—C131.382 (3)
O2—C81.412 (2)C12—H120.9500
O2—C191.427 (2)C13—C141.386 (3)
N1—C71.358 (2)C13—H130.9500
N1—C61.427 (2)C14—C151.390 (3)
N1—C161.470 (2)C14—H140.9500
N2—C11.420 (2)C15—H150.9500
N2—C221.471 (2)C16—C171.480 (3)
N2—C91.481 (2)C16—H16A0.9900
C1—C21.400 (3)C16—H16B0.9900
C1—C61.404 (3)C17—C181.262 (4)
C2—C31.388 (3)C17—H170.9500
C2—H20.9500C18—H18A0.9500
C3—C41.381 (3)C18—H18B0.9500
C3—H30.9500C19—C201.491 (3)
C4—C51.387 (3)C19—H19A0.9900
C4—H40.9500C19—H19B0.9900
C5—C61.391 (3)C20—C211.311 (3)
C5—H50.9500C20—H200.9500
C7—C81.533 (2)C21—H21A0.9500
C8—C91.534 (2)C21—H21B0.9500
C8—H81.0000C22—C231.490 (3)
C9—C101.524 (2)C22—H22A0.9900
C9—H91.0000C22—H22B0.9900
C10—C111.392 (3)C23—C241.308 (3)
C10—C151.397 (3)C23—H230.9500
C11—C121.390 (3)C24—H24A0.9500
C11—H110.9500C24—H24B0.9500
C8—O2—C19114.15 (15)C13—C12—H12119.8
C7—N1—C6122.88 (15)C11—C12—H12119.8
C7—N1—C16117.54 (15)C12—C13—C14119.42 (19)
C6—N1—C16118.35 (16)C12—C13—H13120.3
C1—N2—C22116.90 (15)C14—C13—H13120.3
C1—N2—C9115.16 (14)C13—C14—C15120.5 (2)
C22—N2—C9112.75 (14)C13—C14—H14119.7
C2—C1—C6118.43 (16)C15—C14—H14119.7
C2—C1—N2123.16 (17)C14—C15—C10120.37 (19)
C6—C1—N2118.37 (16)C14—C15—H15119.8
C3—C2—C1120.67 (18)C10—C15—H15119.8
C3—C2—H2119.7N1—C16—C17113.90 (18)
C1—C2—H2119.7N1—C16—H16A108.8
C4—C3—C2120.42 (18)C17—C16—H16A108.8
C4—C3—H3119.8N1—C16—H16B108.8
C2—C3—H3119.8C17—C16—H16B108.8
C3—C4—C5119.72 (19)H16A—C16—H16B107.7
C3—C4—H4120.1C18—C17—C16125.2 (3)
C5—C4—H4120.1C18—C17—H17117.4
C4—C5—C6120.49 (19)C16—C17—H17117.4
C4—C5—H5119.8C17—C18—H18A120.0
C6—C5—H5119.8C17—C18—H18B120.0
C5—C6—C1120.23 (17)H18A—C18—H18B120.0
C5—C6—N1119.76 (17)O2—C19—C20113.60 (17)
C1—C6—N1119.94 (16)O2—C19—H19A108.8
O1—C7—N1122.14 (17)C20—C19—H19A108.8
O1—C7—C8121.71 (17)O2—C19—H19B108.8
N1—C7—C8116.00 (15)C20—C19—H19B108.8
O2—C8—C7111.01 (14)H19A—C19—H19B107.7
O2—C8—C9105.90 (14)C21—C20—C19126.4 (2)
C7—C8—C9110.85 (14)C21—C20—H20116.8
O2—C8—H8109.7C19—C20—H20116.8
C7—C8—H8109.7C20—C21—H21A120.0
C9—C8—H8109.7C20—C21—H21B120.0
N2—C9—C10114.18 (14)H21A—C21—H21B120.0
N2—C9—C8109.67 (14)N2—C22—C23111.07 (16)
C10—C9—C8112.88 (14)N2—C22—H22A109.4
N2—C9—H9106.5C23—C22—H22A109.4
C10—C9—H9106.5N2—C22—H22B109.4
C8—C9—H9106.5C23—C22—H22B109.4
C11—C10—C15118.51 (17)H22A—C22—H22B108.0
C11—C10—C9119.24 (16)C24—C23—C22125.8 (2)
C15—C10—C9122.24 (16)C24—C23—H23117.1
C12—C11—C10120.82 (19)C22—C23—H23117.1
C12—C11—H11119.6C23—C24—H24A120.0
C10—C11—H11119.6C23—C24—H24B120.0
C13—C12—C11120.3 (2)H24A—C24—H24B120.0
C22—N2—C1—C228.3 (2)C1—N2—C9—C1075.02 (19)
C9—N2—C1—C2107.57 (19)C22—N2—C9—C1062.63 (19)
C22—N2—C1—C6149.46 (16)C1—N2—C9—C852.80 (19)
C9—N2—C1—C674.7 (2)C22—N2—C9—C8169.56 (14)
C6—C1—C2—C30.8 (3)O2—C8—C9—N2157.45 (13)
N2—C1—C2—C3178.56 (16)C7—C8—C9—N236.95 (18)
C1—C2—C3—C40.4 (3)O2—C8—C9—C1074.02 (17)
C2—C3—C4—C50.2 (3)C7—C8—C9—C10165.48 (14)
C3—C4—C5—C61.2 (3)N2—C9—C10—C11105.72 (18)
C4—C5—C6—C12.5 (3)C8—C9—C10—C11128.12 (18)
C4—C5—C6—N1174.51 (17)N2—C9—C10—C1573.3 (2)
C2—C1—C6—C52.2 (3)C8—C9—C10—C1552.8 (2)
N2—C1—C6—C5179.92 (16)C15—C10—C11—C120.2 (3)
C2—C1—C6—N1174.72 (16)C9—C10—C11—C12178.87 (18)
N2—C1—C6—N13.1 (2)C10—C11—C12—C131.2 (3)
C7—N1—C6—C5141.28 (18)C11—C12—C13—C140.9 (3)
C16—N1—C6—C551.7 (2)C12—C13—C14—C150.4 (3)
C7—N1—C6—C141.7 (3)C13—C14—C15—C101.5 (3)
C16—N1—C6—C1125.30 (19)C11—C10—C15—C141.2 (3)
C6—N1—C7—O1167.56 (17)C9—C10—C15—C14179.80 (18)
C16—N1—C7—O10.4 (3)C7—N1—C16—C1777.9 (3)
C6—N1—C7—C816.9 (2)C6—N1—C16—C1789.8 (2)
C16—N1—C7—C8175.97 (16)N1—C16—C17—C18143.0 (3)
C19—O2—C8—C770.99 (19)C8—O2—C19—C2089.5 (2)
C19—O2—C8—C9168.62 (14)O2—C19—C20—C215.3 (3)
O1—C7—C8—O213.5 (2)C1—N2—C22—C2363.9 (2)
N1—C7—C8—O2162.12 (15)C9—N2—C22—C23159.25 (15)
O1—C7—C8—C9103.95 (19)N2—C22—C23—C24125.9 (2)
N1—C7—C8—C980.48 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22A···O1i0.992.413.378 (2)165
Symmetry code: (i) x+1, y+1/2, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationClaremon, D. A., Liverton, N., Selnick, H. G. & Smith, G. R. (1996). PCT Int. Appl. WO 9640653.1074.  Google Scholar
First citationJacob, R. G., Radatz, C. S., Rodrigues, M. B., Alves, D., Perin, G., Lenardão, E. J. L. & Savegnago, L. (2011). Heteroat. Chem. 22, 180–185.  Web of Science CrossRef CAS Google Scholar
First citationMaleki, A., Ghamari, N. M. & Kamalzare, M. (2014). RSC Adv. 4, 9416–9423.  Web of Science CrossRef CAS Google Scholar
First citationMinnih, M. S., Kandri Rodi, Y. & Essassi, E. M. (2014). J. Mar. Chim. Heterocycl. 13, 1–24.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWerner, W., Baumgart, J., Burckhardt, G., Fleck, W. F., Geller, K., Gutsche, W., Hanschmann, H., Messerschmidt, A., Römer, W., Tresselt, D. & Löber, G. (1990). Biophys. Chem. 35, 271–285.   CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds