metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[bis­­[μ-4-(4-carb­­oxy­phen­­oxy)benzoato](μ-4,4′-oxydibenzoato)bis­­[μ-3-(pyridin-4-yl)-5-(pyridin-3-yl)-1H-1,2,4-triazole]dicadmium(II)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Engineering, Yinchuan College, China University of Mining and Technology, Ningxia 750021, People's Republic of China
*Correspondence e-mail: ajinychedu@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 16 June 2016; accepted 6 July 2016; online 12 July 2016)

Three kinds of bridging ligands, 4,4′-oxydibenzoate, 4-(4-carb­oxy­phen­oxy)benzoate and 3-(pyridin-4-yl)-5-(pyridin-3-yl)-1H-1,2,4-triazole, link the CdII cations to form the title polymeric complex, [Cd2(C14H8O5)(C14H9O5)2(C12H9N5)2]n, in which each CdII cation is in a distorted N2O5 penta­gonal–bipyramidal coordination geometry. The 4,4′-oxydibenzoate dianion exhibits point group symmetry 2, with the central O atom located on a twofold rotation axis. Classical N—H⋯O, O—H⋯N hydrogen bonds and weak C—H⋯O hydrogen bonds link the complex mol­ecules into a three-dimensional supra­molecular architecture. A solvent-accessible void of 53 (2) Å3 is observed, but no solvent mol­ecule could reasonably located there.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, coordination polymers (CPs) have been of inter­est in the field of crystal engineering, not only because of their potential applications as functional materials for fluorescence, magnetic materials, non-linear optics, ion exchange, catalysis and sorption (Yaghi et al., 2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705-714.]; Abrahams et al., 1999[Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F. & Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475-1477.]; Yang et al., 2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]), but also because of their intriguing aesthetic structures and topologies (Dong et al., 2007[Dong, B.-X., Peng, J., Gómez-García, C. J., Benmansour, S., Jia, H.-Q. & Hu, N.-H. (2007). Inorg. Chem. 46, 5933-5941.]; Huang et al., 2013[Huang, F.-P., Yang, Z.-M., Yao, P.-F., Yu, Q., Tian, J.-L., Bian, H.-D., Yan, S.-P., Liao, D.-Z. & Cheng, P. (2013). CrystEngComm, 15, 2657-2668.]). Coordination polymeric frameworks can be rationally designed by careful control of many factors such as the solvent system, temperature, pH value, the metal-to-ligand ratio, geometric requirements of metal ions and secondary building-block ligands.

The V-shaped organic aromatic multi­carboxyl­ate species, H2oba (4,4′-oxydi­benzoic acid), have been extensively employed as building blocks to construct coordination polymeric frameworks (Huang et al., 2010[Huang, X.-Y., Yue, K.-F., Jin, J.-C., Liu, J.-Q., Wang, C.-J., Wang, Y.-Y. & Shi, Q.-Z. (2010). Inorg. Chem. Commun. 13, 338-341.]; Lan et al., 2008[Lan, Y.-Q., Li, S.-L., Fu, Y.-M., Xu, Y.-H., Li, L., Su, Z.-M. & Fu, Q. (2008). Dalton Trans. pp. 6796-6807.]; Yao et al., 2013[Yao, P.-F., Ye, C.-J., Huang, F.-P., Bian, H.-D., Yu, Q. & Hu, K. (2013). J. Coord. Chem. 66, 1591-1601.]) because they show various coordination modes with metal ions, which give rise to a great variety of multi-dimensional structures and fascinating topologies. On the other hand, a mixed-ligand strategy is presently a good choice for the construction of coordination polymers. Careful selection of the properties of the secondary ligands, such as shape, functionality, flexibility, angle and symmetry, is therefore key for the rational design of structures and specific chemical and physical properties. In the present case, we have prepared the title compound, [Cd2(oba)(Hoba)2(3,4′-bpt)2]n, using H2oba and 3,4′-bpt.

The asymmetric unit comprises of one independent CdII cation, one 3,4′-bpt ligand and one Hoba ligand and a half oba2− ligand. Each CdII cation is coordinated by two nitro­gen atoms, occupying the axial positions, from two different 3,4′-bpt ligands and five oxygen atoms, occupying the equatorial positions, from three different oba2− ligands (Fig. 1[link]). This binding mode forms a distorted penta­gonal–bipyramid coordination geometry around each metal ion with Cd—N(py) distances of 2.310 (3) and 2.366 (3) Å and Cd—O (carboxyl­ate) distance of 2.274 (3)-2.598 (3) Å, similar to that observed in previously reported CdII complexes. The oba2− and 3,4′-bpt ligands connect the CdII cations, forming a three-dimensional framework. The Hoba ligands are bound only through their carboxylate group to the cation, whereas the carboxyl group is non-coordinating (Fig. 2[link]). Classical N—H⋯O and O—H⋯N hydrogen bonds and weak C—H⋯O inter­actions (Table 1[link]) link the complex mol­ecules into a three-dimensional supra­molecular architecture.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6ii 0.86 1.85 2.695 (5) 169
O4—H4⋯N2iii 0.82 2.06 2.848 (5) 162
C3—H3⋯O6ii 0.93 2.40 3.285 (5) 158
C25—H25⋯O3iv 0.93 2.37 3.238 (8) 154
Symmetry codes: (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x, y-1, z.
[Figure 1]
Figure 1
The asymmetric unit of the title complex, with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The polymeric structure of the title complex.

Synthesis and crystallization

Materials and physical measurements

All reagents and solvents were purchased from commercial sources and used as received. Elemental analysis for carbon, hydrogen and nitro­gen were carried out on a Perkin–Elmer elemental analyzer model 240. Infrared spectra were taken on a Bruker Tensor 27 Fourier transform IR spectroscope in the region 4000–400 cm−1, using KBr pellets.

Synthesis of [Cd(Hoba)(oba)0.5(3,4′-bpt)2]n

A mixture of Cd(OAc)2·H2O (8 mg, 0.03 mmol), H2oba (7.7 mg, 0.06 mmol), and 3,4′-bpt (6.6 mg, 0.03 mmol) was dissolved in distilled water (7 ml), and then sealed in a 23-ml Teflon-lined stainless steel autoclave and heated at 433 K for 5 d under autogenous pressure. Then the mixture was cooled to room temperature at a rate of 5 K h−1, and colourless crystals were obtained in a 42% yield based on CdII. FT–IR (KBr pellet, cm−1): 3121 (w), 1608 (s), 1549 (s), 1494 (m), 1476 (m), 1412 (s), 1356 (s), 1298 (w), 1232 (s), 1155 (m), 873 (m), 844 (w), 771 (m), 694 (w).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cd2(C14H8O5)(C14H9O5)2(C12H9N5)2]
Mr 1441.91
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 27.471 (3), 7.4230 (6), 31.425 (3)
β (°) 108.428 (3)
V3) 6079.5 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.78
Crystal size (mm) 0.20 × 0.14 × 0.11
 
Data collection
Diffractometer Bruker SMART 1000 CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.86, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 14594, 5323, 3773
Rint 0.060
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.107, 1.04
No. of reflections 5323
No. of parameters 421
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.68
Computer programs: SMART and SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[bis[µ-4-(4-carboxyphenoxy)benzoato](µ-4,4'-oxydibenzoato)bis[µ-3-(pyridin-4-yl)-5-(pyridin-3-yl)-1H-1,2,4-triazole]dicadmium(II)] top
Crystal data top
[Cd2(C14H8O5)(C14H9O5)2(C12H9N5)2]F(000) = 2904
Mr = 1441.91Dx = 1.575 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3641 reflections
a = 27.471 (3) Åθ = 2.4–24.3°
b = 7.4230 (6) ŵ = 0.78 mm1
c = 31.425 (3) ÅT = 298 K
β = 108.428 (3)°Block, colorless
V = 6079.5 (9) Å30.20 × 0.14 × 0.11 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5323 independent reflections
Radiation source: fine-focus sealed tube3773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 3132
Tmin = 0.86, Tmax = 0.92k = 88
14594 measured reflectionsl = 3732
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.9862P]
where P = (Fo2 + 2Fc2)/3
5323 reflections(Δ/σ)max < 0.001
421 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.68 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.289097 (11)0.46259 (5)0.030672 (11)0.02920 (13)
N10.07438 (13)0.7187 (5)0.01858 (12)0.0294 (9)
H10.09560.72520.03360.035*
N20.02470 (13)0.7750 (5)0.03350 (12)0.0297 (9)
N30.04482 (12)0.6626 (5)0.03668 (11)0.0267 (9)
N40.22153 (13)0.4928 (5)0.05906 (12)0.0293 (10)
N50.36097 (13)0.3577 (6)0.01178 (12)0.0329 (10)
O10.28217 (12)0.1455 (5)0.04089 (10)0.0358 (8)
O20.23531 (11)0.0955 (5)0.03804 (10)0.0361 (8)
O30.42338 (18)0.7322 (6)0.35543 (14)0.0800 (14)
O40.47900 (14)0.5180 (5)0.38766 (13)0.0539 (10)
H40.49070.59680.40640.081*
O50.32055 (18)0.0274 (6)0.24857 (12)0.0777 (15)
O60.35603 (11)0.7166 (5)0.06091 (10)0.0342 (8)
O70.33973 (12)0.5070 (5)0.10412 (10)0.0381 (9)
O80.50000.9873 (7)0.25000.090 (2)
C10.00927 (15)0.7377 (6)0.00170 (15)0.0281 (11)
C20.08526 (15)0.6516 (6)0.02293 (14)0.0251 (10)
C30.17640 (15)0.5611 (6)0.03435 (14)0.0300 (11)
H30.17270.59920.00530.036*
C40.13503 (15)0.5775 (6)0.05022 (14)0.0271 (11)
C50.14072 (18)0.5158 (7)0.09313 (15)0.0409 (14)
H50.11340.52170.10460.049*
C60.18669 (18)0.4467 (8)0.11829 (16)0.0470 (15)
H60.19120.40540.14720.056*
C70.22616 (18)0.4386 (7)0.10063 (16)0.0382 (13)
H70.25760.39330.11840.046*
C80.37231 (16)0.3992 (7)0.02542 (15)0.0333 (12)
H80.34740.45590.04880.040*
C90.41953 (16)0.3614 (7)0.03072 (15)0.0359 (12)
H90.42590.39300.05710.043*
C100.45670 (16)0.2770 (6)0.00319 (14)0.0274 (11)
C110.44514 (17)0.2305 (7)0.04141 (16)0.0358 (12)
H110.46920.17220.06500.043*
C120.39741 (18)0.2718 (7)0.04391 (17)0.0400 (13)
H120.38990.23780.06960.048*
C130.26637 (16)0.0196 (7)0.06003 (15)0.0281 (11)
C140.28350 (16)0.0110 (6)0.11004 (14)0.0293 (11)
C150.32486 (16)0.1127 (7)0.13509 (14)0.0302 (11)
H150.34380.17780.12060.036*
C160.33845 (17)0.1191 (7)0.18129 (15)0.0364 (12)
H160.36680.18590.19780.044*
C170.3099 (2)0.0266 (8)0.20264 (16)0.0498 (15)
C180.2697 (2)0.0800 (9)0.17870 (17)0.0587 (17)
H180.25140.14670.19360.070*
C190.25647 (19)0.0883 (8)0.13231 (16)0.0464 (14)
H190.22930.16080.11610.056*
C200.4371 (2)0.5775 (9)0.35748 (18)0.0476 (15)
C210.40777 (19)0.4321 (8)0.32755 (15)0.0398 (13)
C220.3641 (2)0.4764 (9)0.29242 (19)0.0603 (17)
H220.35440.59640.28700.072*
C230.3352 (2)0.3426 (11)0.2656 (2)0.0687 (19)
H230.30560.37210.24240.082*
C240.3501 (2)0.1671 (9)0.27310 (17)0.0544 (17)
C250.3937 (2)0.1211 (9)0.30754 (18)0.0581 (16)
H250.40410.00160.31260.070*
C260.4211 (2)0.2561 (8)0.33417 (17)0.0524 (15)
H260.45020.22580.35780.063*
C270.36363 (15)0.6449 (7)0.09910 (15)0.0288 (11)
C280.40157 (17)0.7291 (7)0.13951 (15)0.0318 (11)
C290.42965 (17)0.8779 (8)0.13527 (17)0.0414 (13)
H290.42560.92480.10690.050*
C300.46327 (19)0.9576 (8)0.17205 (18)0.0502 (14)
H300.48261.05630.16880.060*
C310.4681 (2)0.8909 (9)0.21363 (18)0.0572 (17)
C320.4408 (3)0.7453 (9)0.21871 (19)0.078 (2)
H320.44470.70020.24720.094*
C330.4070 (2)0.6642 (8)0.18155 (18)0.0624 (18)
H330.38790.56520.18510.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01983 (18)0.0412 (2)0.0273 (2)0.00041 (17)0.00838 (13)0.00007 (17)
N10.0235 (19)0.040 (3)0.028 (2)0.0058 (18)0.0120 (17)0.0039 (18)
N20.0222 (19)0.038 (3)0.032 (2)0.0040 (18)0.0123 (17)0.0012 (18)
N30.0226 (19)0.032 (3)0.031 (2)0.0021 (17)0.0163 (17)0.0016 (18)
N40.0228 (19)0.035 (3)0.030 (2)0.0053 (17)0.0094 (16)0.0018 (17)
N50.026 (2)0.041 (3)0.034 (2)0.0002 (19)0.0129 (18)0.0012 (19)
O10.046 (2)0.036 (2)0.0262 (18)0.0050 (17)0.0135 (15)0.0043 (15)
O20.0327 (17)0.047 (2)0.0252 (17)0.0099 (17)0.0040 (14)0.0013 (16)
O30.102 (4)0.046 (3)0.071 (3)0.013 (3)0.003 (3)0.005 (2)
O40.048 (2)0.051 (3)0.055 (3)0.000 (2)0.0047 (19)0.0138 (19)
O50.114 (4)0.090 (4)0.027 (2)0.057 (3)0.018 (2)0.007 (2)
O60.0272 (16)0.051 (2)0.0250 (18)0.0008 (16)0.0097 (14)0.0039 (16)
O70.0352 (18)0.042 (3)0.0345 (19)0.0109 (17)0.0066 (15)0.0044 (16)
O80.103 (5)0.037 (4)0.072 (4)0.0000.055 (4)0.000
C10.021 (2)0.027 (3)0.039 (3)0.001 (2)0.013 (2)0.003 (2)
C20.024 (2)0.021 (3)0.033 (3)0.001 (2)0.012 (2)0.002 (2)
C30.025 (2)0.037 (3)0.027 (2)0.002 (2)0.008 (2)0.002 (2)
C40.025 (2)0.028 (3)0.030 (3)0.005 (2)0.0101 (19)0.004 (2)
C50.033 (3)0.060 (4)0.033 (3)0.013 (3)0.016 (2)0.006 (3)
C60.044 (3)0.070 (4)0.032 (3)0.019 (3)0.020 (2)0.022 (3)
C70.034 (3)0.040 (4)0.040 (3)0.014 (2)0.011 (2)0.009 (2)
C80.026 (2)0.042 (3)0.032 (3)0.005 (2)0.010 (2)0.001 (2)
C90.031 (3)0.050 (4)0.030 (3)0.006 (2)0.015 (2)0.005 (2)
C100.026 (2)0.028 (3)0.030 (3)0.003 (2)0.012 (2)0.004 (2)
C110.026 (2)0.044 (4)0.038 (3)0.000 (2)0.011 (2)0.001 (2)
C120.038 (3)0.047 (4)0.041 (3)0.007 (3)0.021 (2)0.008 (3)
C130.021 (2)0.034 (3)0.028 (3)0.009 (2)0.007 (2)0.001 (2)
C140.027 (2)0.033 (3)0.028 (2)0.001 (2)0.009 (2)0.001 (2)
C150.031 (2)0.036 (3)0.025 (2)0.001 (2)0.011 (2)0.004 (2)
C160.036 (3)0.039 (3)0.032 (3)0.010 (2)0.007 (2)0.002 (2)
C170.067 (4)0.055 (4)0.025 (3)0.019 (3)0.012 (3)0.000 (3)
C180.072 (4)0.075 (5)0.033 (3)0.032 (4)0.022 (3)0.003 (3)
C190.047 (3)0.053 (4)0.040 (3)0.025 (3)0.016 (3)0.006 (3)
C200.054 (4)0.049 (4)0.043 (3)0.003 (3)0.020 (3)0.003 (3)
C210.046 (3)0.045 (4)0.031 (3)0.001 (3)0.016 (2)0.003 (3)
C220.070 (4)0.059 (4)0.045 (3)0.013 (3)0.008 (3)0.004 (3)
C230.058 (4)0.090 (6)0.049 (4)0.002 (4)0.003 (3)0.010 (4)
C240.075 (4)0.063 (5)0.028 (3)0.025 (4)0.020 (3)0.007 (3)
C250.086 (4)0.050 (4)0.034 (3)0.010 (4)0.012 (3)0.001 (3)
C260.058 (4)0.052 (4)0.039 (3)0.001 (3)0.004 (3)0.001 (3)
C270.017 (2)0.042 (3)0.028 (3)0.005 (2)0.0072 (19)0.006 (2)
C280.031 (2)0.032 (3)0.028 (3)0.003 (2)0.002 (2)0.004 (2)
C290.035 (3)0.047 (4)0.041 (3)0.002 (3)0.010 (2)0.001 (3)
C300.037 (3)0.047 (4)0.058 (4)0.013 (3)0.002 (3)0.000 (3)
C310.053 (3)0.043 (4)0.048 (4)0.001 (3)0.024 (3)0.008 (3)
C320.115 (5)0.062 (5)0.028 (3)0.024 (4)0.019 (3)0.014 (3)
C330.077 (4)0.056 (4)0.039 (3)0.030 (4)0.003 (3)0.010 (3)
Geometric parameters (Å, º) top
Cd1—O12.391 (4)C8—H80.9300
Cd1—O1i2.598 (3)C9—C101.372 (6)
Cd1—O2i2.274 (3)C9—H90.9300
Cd1—O62.595 (3)C10—C111.380 (6)
Cd1—O72.311 (3)C10—C1iv1.488 (5)
Cd1—N42.310 (3)C11—C121.373 (6)
Cd1—N52.366 (3)C11—H110.9300
N1—C21.339 (5)C12—H120.9300
N1—N21.361 (4)C13—C141.493 (6)
N1—H10.8600C14—C191.383 (6)
N2—C11.333 (5)C14—C151.384 (6)
N3—C21.316 (5)C15—C161.381 (6)
N3—C11.339 (5)C15—H150.9300
N4—C71.334 (6)C16—C171.368 (6)
N4—C31.337 (5)C16—H160.9300
N5—C121.338 (6)C17—C181.373 (7)
N5—C81.337 (5)C18—C191.388 (7)
O1—C131.260 (5)C18—H180.9300
O1—Cd1i2.598 (3)C19—H190.9300
O2—C131.250 (5)C20—C211.490 (8)
O2—Cd1i2.274 (3)C21—C261.355 (7)
O3—C201.205 (7)C21—C221.388 (7)
O4—C201.315 (6)C22—C231.381 (8)
O4—H40.8200C22—H220.9300
O5—C171.379 (6)C23—C241.364 (9)
O5—C241.391 (7)C23—H230.9300
O6—C271.268 (5)C24—C251.378 (8)
O7—C271.253 (5)C25—C261.369 (8)
O8—C311.397 (6)C25—H250.9300
O8—C31ii1.397 (6)C26—H260.9300
C1—C10iii1.488 (5)C27—C281.501 (6)
C2—C41.472 (6)C28—C331.369 (7)
C3—C41.383 (5)C28—C291.378 (7)
C3—H30.9300C29—C301.365 (7)
C4—C51.385 (6)C29—H290.9300
C5—C61.361 (6)C30—C311.364 (8)
C5—H50.9300C30—H300.9300
C6—C71.367 (6)C31—C321.355 (8)
C6—H60.9300C32—C331.379 (7)
C7—H70.9300C32—H320.9300
C8—C91.388 (6)C33—H330.9300
O2i—Cd1—N4107.04 (12)C11—C10—C1iv118.1 (4)
O2i—Cd1—O7142.22 (12)C12—C11—C10118.7 (5)
N4—Cd1—O784.49 (12)C12—C11—H11120.6
O2i—Cd1—N585.60 (12)C10—C11—H11120.6
N4—Cd1—N5164.75 (14)N5—C12—C11124.3 (4)
O7—Cd1—N590.63 (12)N5—C12—H12117.8
O2i—Cd1—O1122.85 (11)C11—C12—H12117.8
N4—Cd1—O186.32 (12)O2—C13—O1121.4 (4)
O7—Cd1—O193.13 (11)O2—C13—C14119.1 (4)
N5—Cd1—O179.51 (12)O1—C13—C14119.5 (4)
O2i—Cd1—O689.69 (11)C19—C14—C15118.6 (4)
N4—Cd1—O6110.55 (11)C19—C14—C13121.0 (4)
O7—Cd1—O652.96 (10)C15—C14—C13120.3 (4)
N5—Cd1—O677.29 (12)C16—C15—C14121.2 (4)
O1—Cd1—O6138.01 (10)C16—C15—H15119.4
O2i—Cd1—O1i52.89 (11)C14—C15—H15119.4
N4—Cd1—O1i83.49 (11)C17—C16—C15119.5 (4)
O7—Cd1—O1i163.63 (11)C17—C16—H16120.3
N5—Cd1—O1i98.13 (11)C15—C16—H16120.3
O1—Cd1—O1i75.05 (11)C16—C17—C18120.4 (5)
O6—Cd1—O1i142.57 (10)C16—C17—O5123.1 (5)
C2—N1—N2109.9 (3)C18—C17—O5116.4 (5)
C2—N1—H1125.0C17—C18—C19120.0 (5)
N2—N1—H1125.0C17—C18—H18120.0
C1—N2—N1101.4 (3)C19—C18—H18120.0
C2—N3—C1103.2 (3)C14—C19—C18120.2 (5)
C7—N4—C3117.8 (4)C14—C19—H19119.9
C7—N4—Cd1120.6 (3)C18—C19—H19119.9
C3—N4—Cd1121.5 (3)O3—C20—O4123.1 (5)
C12—N5—C8116.4 (4)O3—C20—C21124.0 (6)
C12—N5—Cd1116.9 (3)O4—C20—C21112.8 (5)
C8—N5—Cd1125.9 (3)C26—C21—C22118.3 (5)
C13—O1—Cd1148.0 (3)C26—C21—C20122.4 (5)
C13—O1—Cd1i84.6 (3)C22—C21—C20119.3 (6)
Cd1—O1—Cd1i104.95 (11)C23—C22—C21120.1 (6)
C13—O2—Cd1i100.0 (3)C23—C22—H22120.0
C20—O4—H4109.5C21—C22—H22120.0
C17—O5—C24118.5 (4)C24—C23—C22119.8 (6)
C27—O6—Cd185.8 (3)C24—C23—H23120.1
C27—O7—Cd199.5 (3)C22—C23—H23120.1
C31—O8—C31ii118.4 (6)C23—C24—C25120.8 (6)
N2—C1—N3115.3 (4)C23—C24—O5121.7 (6)
N2—C1—C10iii123.5 (4)C25—C24—O5117.4 (6)
N3—C1—C10iii121.2 (4)C26—C25—C24118.2 (6)
N3—C2—N1110.2 (4)C26—C25—H25120.9
N3—C2—C4123.9 (4)C24—C25—H25120.9
N1—C2—C4125.9 (4)C21—C26—C25122.8 (5)
N4—C3—C4122.7 (4)C21—C26—H26118.6
N4—C3—H3118.6C25—C26—H26118.6
C4—C3—H3118.6O7—C27—O6121.7 (4)
C3—C4—C5118.0 (4)O7—C27—C28119.0 (4)
C3—C4—C2122.7 (4)O6—C27—C28119.2 (5)
C5—C4—C2119.3 (4)C33—C28—C29118.8 (5)
C6—C5—C4119.2 (4)C33—C28—C27120.3 (5)
C6—C5—H5120.4C29—C28—C27120.8 (4)
C4—C5—H5120.4C30—C29—C28121.0 (5)
C5—C6—C7119.4 (4)C30—C29—H29119.5
C5—C6—H6120.3C28—C29—H29119.5
C7—C6—H6120.3C31—C30—C29119.3 (5)
N4—C7—C6122.8 (4)C31—C30—H30120.4
N4—C7—H7118.6C29—C30—H30120.4
C6—C7—H7118.6C32—C31—C30120.8 (5)
N5—C8—C9122.9 (4)C32—C31—O8122.7 (5)
N5—C8—H8118.5C30—C31—O8116.4 (6)
C9—C8—H8118.5C31—C32—C33119.9 (5)
C10—C9—C8119.6 (4)C31—C32—H32120.0
C10—C9—H9120.2C33—C32—H32120.0
C8—C9—H9120.2C28—C33—C32120.1 (6)
C9—C10—C11118.1 (4)C28—C33—H33119.9
C9—C10—C1iv123.8 (4)C32—C33—H33119.9
C2—N1—N2—C10.6 (5)C5—C6—C7—N41.3 (9)
O2i—Cd1—N4—C7175.1 (3)C12—N5—C8—C91.8 (7)
O7—Cd1—N4—C731.9 (4)Cd1—N5—C8—C9167.5 (4)
N5—Cd1—N4—C739.9 (7)N5—C8—C9—C100.3 (8)
O1—Cd1—N4—C761.6 (4)C8—C9—C10—C110.9 (7)
O6—Cd1—N4—C778.9 (4)C8—C9—C10—C1iv177.2 (4)
O1i—Cd1—N4—C7136.9 (4)C9—C10—C11—C120.5 (7)
O2i—Cd1—N4—C36.3 (4)C1iv—C10—C11—C12177.7 (5)
O7—Cd1—N4—C3149.5 (4)C8—N5—C12—C112.2 (8)
N5—Cd1—N4—C3138.7 (5)Cd1—N5—C12—C11168.1 (4)
O1—Cd1—N4—C3117.0 (4)C10—C11—C12—N51.1 (8)
O6—Cd1—N4—C3102.5 (3)Cd1i—O2—C13—O112.0 (5)
O1i—Cd1—N4—C341.7 (3)Cd1i—O2—C13—C14165.8 (3)
O2i—Cd1—N5—C12173.7 (4)Cd1—O1—C13—O2120.0 (5)
N4—Cd1—N5—C1239.6 (7)Cd1i—O1—C13—O210.3 (4)
O7—Cd1—N5—C1231.4 (4)Cd1—O1—C13—C1457.7 (7)
O1—Cd1—N5—C1261.7 (4)Cd1i—O1—C13—C14167.4 (4)
O6—Cd1—N5—C1283.1 (4)O2—C13—C14—C1917.1 (7)
O1i—Cd1—N5—C12134.7 (4)O1—C13—C14—C19160.7 (5)
O2i—Cd1—N5—C84.4 (4)O2—C13—C14—C15167.4 (4)
N4—Cd1—N5—C8151.1 (5)O1—C13—C14—C1514.9 (6)
O7—Cd1—N5—C8137.9 (4)C19—C14—C15—C161.5 (7)
O1—Cd1—N5—C8129.0 (4)C13—C14—C15—C16174.1 (4)
O6—Cd1—N5—C886.2 (4)C14—C15—C16—C171.4 (8)
O1i—Cd1—N5—C856.0 (4)C15—C16—C17—C183.6 (9)
O2i—Cd1—O1—C13127.7 (5)C15—C16—C17—O5179.4 (5)
N4—Cd1—O1—C1319.8 (5)C24—O5—C17—C1620.8 (9)
O7—Cd1—O1—C1364.5 (5)C24—O5—C17—C18162.1 (6)
N5—Cd1—O1—C13154.5 (5)C16—C17—C18—C192.8 (10)
O6—Cd1—O1—C1397.2 (5)O5—C17—C18—C19180.0 (5)
O1i—Cd1—O1—C13104.0 (6)C15—C14—C19—C182.3 (8)
O2i—Cd1—O1—Cd1i23.70 (16)C13—C14—C19—C18173.3 (5)
N4—Cd1—O1—Cd1i84.24 (12)C17—C18—C19—C140.2 (9)
O7—Cd1—O1—Cd1i168.50 (11)O3—C20—C21—C26172.0 (6)
N5—Cd1—O1—Cd1i101.44 (13)O4—C20—C21—C265.8 (7)
O6—Cd1—O1—Cd1i158.75 (10)O3—C20—C21—C225.8 (8)
O1i—Cd1—O1—Cd1i0.0O4—C20—C21—C22176.4 (5)
O2i—Cd1—O6—C27173.6 (2)C26—C21—C22—C230.8 (8)
N4—Cd1—O6—C2765.5 (3)C20—C21—C22—C23177.1 (5)
O7—Cd1—O6—C270.2 (2)C21—C22—C23—C241.3 (9)
N5—Cd1—O6—C27100.8 (3)C22—C23—C24—C250.6 (9)
O1—Cd1—O6—C2742.8 (3)C22—C23—C24—O5176.2 (5)
O1i—Cd1—O6—C27172.4 (2)C17—O5—C24—C2359.4 (8)
O2i—Cd1—O7—C279.9 (4)C17—O5—C24—C25124.9 (6)
N4—Cd1—O7—C27120.8 (3)C23—C24—C25—C260.6 (9)
N5—Cd1—O7—C2773.7 (3)O5—C24—C25—C26175.2 (5)
O1—Cd1—O7—C27153.3 (3)C22—C21—C26—C250.4 (9)
O6—Cd1—O7—C270.2 (2)C20—C21—C26—C25178.3 (5)
O1i—Cd1—O7—C27163.7 (3)C24—C25—C26—C211.1 (9)
N1—N2—C1—N30.4 (5)Cd1—O7—C27—O60.4 (5)
N1—N2—C1—C10iii178.9 (4)Cd1—O7—C27—C28178.6 (3)
C2—N3—C1—N20.0 (5)Cd1—O6—C27—O70.4 (4)
C2—N3—C1—C10iii179.3 (4)Cd1—O6—C27—C28178.6 (4)
C1—N3—C2—N10.4 (5)O7—C27—C28—C335.0 (7)
C1—N3—C2—C4179.7 (4)O6—C27—C28—C33174.0 (5)
N2—N1—C2—N30.7 (5)O7—C27—C28—C29178.2 (4)
N2—N1—C2—C4180.0 (4)O6—C27—C28—C292.8 (7)
C7—N4—C3—C40.1 (7)C33—C28—C29—C301.5 (8)
Cd1—N4—C3—C4178.7 (3)C27—C28—C29—C30178.3 (4)
N4—C3—C4—C51.7 (7)C28—C29—C30—C311.5 (8)
N4—C3—C4—C2179.6 (4)C29—C30—C31—C321.1 (9)
N3—C2—C4—C3177.5 (4)C29—C30—C31—O8175.0 (5)
N1—C2—C4—C33.3 (7)C31ii—O8—C31—C3243.9 (5)
N3—C2—C4—C50.4 (7)C31ii—O8—C31—C30140.1 (6)
N1—C2—C4—C5178.8 (5)C30—C31—C32—C330.8 (11)
C3—C4—C5—C61.7 (8)O8—C31—C32—C33175.0 (6)
C2—C4—C5—C6179.8 (5)C29—C28—C33—C321.2 (9)
C4—C5—C6—C70.4 (8)C27—C28—C33—C32178.0 (5)
C3—N4—C7—C61.4 (7)C31—C32—C33—C280.8 (11)
Cd1—N4—C7—C6177.3 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+1/2; (iii) x1/2, y+1/2, z; (iv) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6v0.861.852.695 (5)169
O4—H4···N2vi0.822.062.848 (5)162
C3—H3···O6v0.932.403.285 (5)158
C25—H25···O3vii0.932.373.238 (8)154
Symmetry codes: (v) x+1/2, y+3/2, z; (vi) x+1/2, y+3/2, z+1/2; (vii) x, y1, z.
 

Acknowledgements

We thank the Ningxia Natural Science Foundation of China (grant No. NZ14232).

References

First citationAbrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F. & Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475–1477.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, B.-X., Peng, J., Gómez-García, C. J., Benmansour, S., Jia, H.-Q. & Hu, N.-H. (2007). Inorg. Chem. 46, 5933–5941.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, F.-P., Yang, Z.-M., Yao, P.-F., Yu, Q., Tian, J.-L., Bian, H.-D., Yan, S.-P., Liao, D.-Z. & Cheng, P. (2013). CrystEngComm, 15, 2657–2668.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, X.-Y., Yue, K.-F., Jin, J.-C., Liu, J.-Q., Wang, C.-J., Wang, Y.-Y. & Shi, Q.-Z. (2010). Inorg. Chem. Commun. 13, 338–341.  Web of Science CSD CrossRef CAS Google Scholar
First citationLan, Y.-Q., Li, S.-L., Fu, Y.-M., Xu, Y.-H., Li, L., Su, Z.-M. & Fu, Q. (2008). Dalton Trans. pp. 6796–6807.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar
First citationYao, P.-F., Ye, C.-J., Huang, F.-P., Bian, H.-D., Yu, Q. & Hu, K. (2013). J. Coord. Chem. 66, 1591–1601.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds