metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­chlorido­[2-(pyridin-2-yl-κN)benzo[b][1,5]naphthyridine-κN1]zinc

CROSSMARK_Color_square_no_text.svg

aGraduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, and bInstitute for Integrated Cell-Material Science (iCeMS), Kyoto University, Advanced Chemical Technology Center in Kyoto, 105 Jibu-cho, Fushimi-ku, Kyoto, 612-8374, Japan
*Correspondence e-mail: ohtsu@sci.u-toyama.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 June 2016; accepted 6 July 2016; online 7 July 2016)

The coordination environment of the ZnII atom in the title complex, [ZnCl2(C17H11N3)], is distorted tetra­hedral. The NAD+/NADH-analogous ligand is twisted and chelates through one pyridine N atom and one N atom of the benzonaphthyridine ring system. In the crystal, mol­ecules are stacked along the a axis and are held together through ππ inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Much attention has been paid to transition-metal complexes incorporating the NAD+/NADH-analogous ligand pbn {pbn = 2-(pyridin-2-yl)benzo[b][1,5]naphthyridine, C17H11N3} because these compounds can feature remarkable photo-induced multi-electron storage (Fukushima et al., 2010[Fukushima, T., Wada, T., Ohtsu, H. & Tanaka, K. (2010). Dalton Trans. 39, 11526-11534.]; Ohtsu & Tanaka, 2012a[Ohtsu, H. & Tanaka, K. (2012a). Chem. Commun. 48, 1796-1798.]) and exhibit photo-driven CO2 reduction abilities (Ohtsu & Tanaka, 2012b[Ohtsu, H. & Tanaka, K. (2012b). Angew. Chem. Int. Ed. 51, 9792-9795.]; Ohtsu et al., 2015[Ohtsu, H., Tsuge, K. & Tanaka, K. (2015). J. Photochem. Photobiol. Chem. 313, 163-167.]). In this context, the title complex, [Zn(pbn)Cl2], was prepared. Its mol­ecular structure is shown in Fig. 1[link]. The zinc(II) cation is tetra­coordinated by two N atoms of the pbn ligand and two Cl ions with Zn—N distances of 2.044 (3) and 2.090 (3) Å and Zn—Cl distances of 2.1944 (7) and 2.2313 (10) Å. The qu­anti­tative descriptor for fourfold coordination, τ4, which can range from τ4 = 1 for a perfect tetra­hedral configuration to τ4 = 0 for a perfect square-planar configuration (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) is τ4 = 0.85 for the zinc(II) atom by using the equation τ4 = (360-(α+β))/141, where α = Cl2—Zn1—N3 [120.36 (7)°] and β = Cl1—Zn1—N1 [119.35 (6)°], respectively. Thus, the coordination environment of the zinc(II) atom in [Zn(pbn)Cl2] is slightly distorted tetra­hedral. The pyridine ring and the benzonaphthyridine ring in the pbn ligand are twisted, as revealed by the dihedral angle of 16.36 (7)° between the two least-squares planes.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

In the crystal, the mol­ecules are stacked along the a axis as shown in Fig. 2[link]. The distance between the centroids of the benzonaphthyridine moieties is 3.7369 (4) Å, which is indicative of inter­molecular ππ stacking inter­actions.

[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. H atoms have been omitted for clarity.

Synthesis and crystallization

The NAD+/NADH-analogous ligand, 2-(pyridin-2-yl)benzo[b][1,5]naphthyridine (pbn), was prepared according to the literature protocol (Koizumi & Tanaka, 2005[Koizumi, T.-a. & Tanaka, K. (2005). Angew. Chem. Int. Ed. 44, 5891-5894.]). To a hot methano­lic solution (20 ml) of pbn (51.6 mg, 0.20 mmol) was added dropwise ZnCl2 (27.4 mg, 0.20 mmol) in methanol (10 ml), and the resulting hot solution was filtered. After the solution was left to stand for a few days at room temperature, yellow crystals of the title compound were obtained (yield; 34.9 mg, 44%). Elemental analysis, found: C 51.92, H 3.17, N 10.73%; calculated for C17H11Cl2N3Zn: C 51.87, H 2.82, N 10.68%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [ZnCl2(C17H11N3)]
Mr 393.58
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.90780 (14), 8.27871 (15), 13.4075 (3)
α, β, γ (°) 73.8395 (7), 79.2764 (7), 68.1246 (7)
V3) 779.00 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.35
Crystal size (mm) 0.09 × 0.06 × 0.02
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.740, 0.899
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 9141, 2799, 2338
Rint 0.046
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.08
No. of reflections 2799
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.41
Computer programs: RAPID AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. Crystal Maker, Bicester, Oxfordshire, England.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: RAPID AUTO (Rigaku, 2001); cell refinement: RAPID AUTO (Rigaku, 2001); data reduction: RAPID AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010), Mercury (Macrae et al., 2008) and CrystalMaker (Palmer, 2007); software used to prepare material for publication: CrystalStructure (Rigaku, 2010) and publCIF (Westrip, 2010).

Dichlorido[2-(pyridin-2-yl-κN)benzo[b]-1,5-naphthyridine-κN1]zinc top
Crystal data top
[ZnCl2(C17H11N3)]Z = 2
Mr = 393.58F(000) = 396.00
Triclinic, P1Dx = 1.678 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54187 Å
a = 7.90780 (14) ÅCell parameters from 6125 reflections
b = 8.27871 (15) Åθ = 3.4–68.1°
c = 13.4075 (3) ŵ = 5.35 mm1
α = 73.8395 (7)°T = 173 K
β = 79.2764 (7)°Block, yellow
γ = 68.1246 (7)°0.09 × 0.06 × 0.02 mm
V = 779.00 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2338 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.046
ω scansθmax = 68.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.740, Tmax = 0.899k = 99
9141 measured reflectionsl = 1616
2799 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
2799 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.41 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.41698 (5)0.98623 (4)0.82997 (3)0.03376 (16)
Cl10.18049 (10)1.23090 (9)0.79219 (6)0.0427 (2)
Cl20.66287 (9)1.01287 (9)0.87332 (5)0.0407 (2)
N10.5368 (3)0.8306 (3)0.71983 (16)0.0297 (5)
N20.8589 (3)0.7866 (3)0.48422 (17)0.0339 (6)
N30.3436 (3)0.7661 (3)0.90061 (16)0.0296 (5)
C10.5507 (4)0.6619 (4)0.7581 (2)0.0295 (6)
C20.6749 (4)0.5228 (4)0.7104 (2)0.0355 (7)
C30.7792 (4)0.5637 (4)0.6216 (2)0.0353 (7)
C40.9435 (4)1.0064 (5)0.3483 (2)0.0387 (7)
C50.9299 (4)1.1799 (5)0.3057 (3)0.0411 (7)
C60.8138 (4)1.3189 (4)0.3550 (3)0.0414 (7)
C70.7110 (4)1.2813 (4)0.4452 (3)0.0380 (7)
C80.6182 (4)1.0558 (4)0.5861 (2)0.0319 (6)
C90.7600 (4)0.7458 (4)0.5748 (2)0.0316 (6)
C100.6373 (4)0.8776 (4)0.6281 (2)0.0293 (6)
C110.8396 (4)0.9589 (4)0.4439 (2)0.0333 (6)
C120.7194 (4)1.1003 (4)0.4934 (2)0.0315 (6)
C130.4260 (4)0.6276 (4)0.8532 (2)0.0312 (6)
C140.3886 (4)0.4706 (4)0.8888 (2)0.0342 (7)
C150.2615 (4)0.4546 (4)0.9738 (3)0.0366 (7)
C160.1745 (4)0.5958 (4)1.0209 (2)0.0373 (7)
C170.2187 (4)0.7500 (4)0.9823 (2)0.0345 (7)
H20.68430.40180.74080.0426*
H30.86500.47130.59070.0424*
H41.02310.91570.31410.0465*
H50.99941.20860.24170.0493*
H60.80811.43890.32460.0496*
H70.63251.37550.47710.0455*
H80.53711.14590.62040.0383*
H140.44950.37410.85540.0411*
H150.23450.34680.99930.0439*
H160.08580.58771.07880.0447*
H170.15880.84781.01480.0414*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0323 (3)0.0270 (3)0.0444 (3)0.00862 (17)0.00031 (17)0.01653 (17)
Cl10.0410 (4)0.0304 (4)0.0549 (5)0.0030 (3)0.0077 (4)0.0175 (4)
Cl20.0381 (4)0.0379 (5)0.0531 (5)0.0139 (4)0.0040 (3)0.0200 (4)
N10.0269 (11)0.0267 (12)0.0378 (12)0.0069 (10)0.0034 (9)0.0140 (10)
N20.0269 (12)0.0359 (14)0.0384 (12)0.0062 (10)0.0027 (10)0.0141 (10)
N30.0305 (12)0.0244 (12)0.0370 (12)0.0080 (10)0.0033 (10)0.0135 (9)
C10.0268 (13)0.0276 (14)0.0363 (14)0.0063 (11)0.0048 (11)0.0134 (11)
C20.0332 (15)0.0286 (15)0.0444 (16)0.0053 (12)0.0044 (12)0.0144 (12)
C30.0295 (14)0.0298 (15)0.0470 (16)0.0026 (12)0.0034 (12)0.0199 (13)
C40.0303 (15)0.0482 (19)0.0376 (15)0.0103 (13)0.0051 (12)0.0126 (14)
C50.0336 (16)0.053 (2)0.0352 (15)0.0153 (14)0.0045 (12)0.0067 (14)
C60.0390 (17)0.0384 (17)0.0460 (17)0.0156 (14)0.0125 (13)0.0004 (14)
C70.0316 (15)0.0359 (17)0.0470 (17)0.0092 (13)0.0080 (13)0.0107 (13)
C80.0289 (14)0.0264 (15)0.0420 (15)0.0055 (12)0.0055 (12)0.0142 (12)
C90.0257 (14)0.0333 (16)0.0382 (14)0.0056 (12)0.0064 (11)0.0154 (12)
C100.0239 (13)0.0305 (15)0.0360 (14)0.0065 (11)0.0046 (11)0.0142 (11)
C110.0261 (14)0.0385 (16)0.0364 (14)0.0093 (12)0.0064 (11)0.0105 (12)
C120.0246 (14)0.0357 (16)0.0353 (14)0.0082 (12)0.0068 (11)0.0103 (12)
C130.0261 (14)0.0314 (15)0.0375 (14)0.0080 (12)0.0066 (11)0.0104 (12)
C140.0337 (15)0.0287 (15)0.0414 (15)0.0069 (12)0.0066 (12)0.0127 (12)
C150.0376 (16)0.0311 (16)0.0451 (16)0.0158 (13)0.0084 (13)0.0062 (13)
C160.0343 (15)0.0421 (18)0.0379 (15)0.0145 (13)0.0029 (12)0.0111 (13)
C170.0285 (14)0.0373 (16)0.0408 (15)0.0089 (13)0.0032 (12)0.0168 (13)
Geometric parameters (Å, º) top
Zn1—Cl12.1944 (7)C8—C101.385 (4)
Zn1—Cl22.2313 (10)C8—C121.385 (4)
Zn1—N12.090 (3)C9—C101.425 (4)
Zn1—N32.044 (3)C11—C121.444 (4)
N1—C11.317 (4)C13—C141.376 (5)
N1—C101.376 (4)C14—C151.384 (4)
N2—C91.347 (4)C15—C161.375 (5)
N2—C111.337 (4)C16—C171.385 (5)
N3—C131.356 (4)C2—H20.950
N3—C171.344 (4)C3—H30.950
C1—C21.426 (4)C4—H40.950
C1—C131.489 (4)C5—H50.950
C2—C31.353 (4)C6—H60.950
C3—C91.424 (4)C7—H70.950
C4—C51.361 (5)C8—H80.950
C4—C111.428 (4)C14—H140.950
C5—C61.419 (5)C15—H150.950
C6—C71.354 (4)C16—H160.950
C7—C121.438 (5)C17—H170.950
Zn1···C83.354 (3)Cl2···H14vi2.8000
N1···C32.795 (4)Cl2···H15v2.8859
N2···C82.832 (4)Cl2···H17iii2.9212
N3···C152.764 (5)N2···H3viii2.6908
C1···C83.590 (4)N2···H8i3.4609
C1···C92.767 (4)N3···H5i3.5104
C2···C102.758 (4)N3···H15v3.5289
C2···C143.028 (4)C1···H16v3.5650
C4···C72.808 (5)C2···H4viii3.5916
C5···C122.806 (4)C2···H7i3.5369
C6···C112.829 (5)C2···H16v3.4158
C9···C122.748 (4)C3···H4viii3.5936
C10···C112.743 (4)C3···H6iv3.4625
C13···C162.735 (4)C3···H7ix3.3748
C14···C172.721 (5)C3···H7i3.5525
Cl1···C4i3.543 (4)C4···H3viii3.5778
Cl1···C16ii3.550 (3)C7···H3vi3.4319
Cl2···C17iii3.554 (4)C7···H7vii3.3738
N2···C6iv3.384 (5)C8···H4iv3.4607
N2···C7iv3.501 (4)C9···H3viii3.5701
N3···C14v3.514 (4)C9···H5iv3.5510
N3···C15v3.453 (4)C9···H6iv3.5360
C1···C6i3.433 (5)C9···H8i3.5466
C1···C7i3.550 (5)C10···H5iv3.3836
C4···Cl1i3.543 (4)C11···H3viii3.5598
C4···C8iv3.550 (5)C12···H4iv3.5206
C4···C12iv3.421 (5)C13···H5i3.4659
C5···C9iv3.478 (5)C13···H6i3.5412
C5···C10iv3.522 (5)C14···H5i3.5878
C5···C13i3.464 (4)C14···H6i3.2800
C6···N2iv3.384 (5)C15···H16x3.1201
C6···C1i3.433 (5)C16···H2v3.5826
C6···C9iv3.477 (5)C16···H15x3.1414
C6···C13i3.498 (5)C16···H16x3.5802
C7···N2iv3.501 (4)C17···H14v3.3974
C7···C1i3.550 (5)C17···H17ii3.5522
C8···C4iv3.550 (5)H2···Cl2ix3.2656
C9···C5iv3.478 (5)H2···C16v3.5826
C9···C6iv3.477 (5)H2···H4viii2.9524
C10···C5iv3.522 (5)H2···H8ix3.5908
C10···C12i3.435 (5)H2···H16v3.3215
C11···C11iv3.528 (5)H2···H17v3.5191
C11···C12iv3.564 (5)H3···N2viii2.6908
C12···C4iv3.421 (5)H3···C4viii3.5778
C12···C10i3.435 (5)H3···C7ix3.4319
C12···C11iv3.564 (5)H3···C9viii3.5701
C13···C5i3.464 (4)H3···C11viii3.5598
C13···C6i3.498 (5)H3···H3viii2.9792
C13···C15v3.458 (5)H3···H4viii2.9517
C13···C16v3.484 (4)H3···H6iv3.3951
C14···N3v3.514 (4)H3···H7ix3.0208
C14···C17v3.461 (4)H4···Cl1i3.0609
C15···N3v3.453 (4)H4···Cl2iv3.2821
C15···C13v3.458 (5)H4···C2viii3.5916
C16···Cl1ii3.550 (3)H4···C3viii3.5936
C16···C13v3.484 (4)H4···C8iv3.4607
C17···Cl2iii3.554 (4)H4···C12iv3.5206
C17···C14v3.461 (4)H4···H2viii2.9524
Zn1···H82.9018H4···H3viii2.9517
Zn1···H173.1467H4···H8iv3.5627
Cl1···H83.2804H5···Cl2iv3.0437
Cl2···H83.4733H5···N3i3.5104
N1···H23.2434H5···C9iv3.5510
N1···H82.5801H5···C10iv3.3836
N2···H32.5905H5···C13i3.4659
N2···H42.5706H5···C14i3.5878
N3···H143.2371H5···H15xi3.5494
N3···H163.2419H5···H16xi3.5093
C1···H33.2683H6···Cl1vii2.7717
C1···H142.7054H6···C3iv3.4625
C2···H142.7354H6···C9iv3.5360
C4···H63.2714H6···C13i3.5412
C5···H73.2644H6···C14i3.2800
C6···H43.2782H6···H3iv3.3951
C7···H53.2533H6···H14i3.1252
C7···H82.6727H7···C2i3.5369
C8···H72.6759H7···C3vi3.3748
C9···H23.2665H7···C3i3.5525
C9···H83.2900H7···C7vii3.3738
C10···H33.3015H7···H3vi3.0208
C11···H53.2816H7···H7vii2.4550
C11···H73.3392H8···N2i3.4609
C11···H83.3004H8···C9i3.5466
C12···H43.3234H8···H2vi3.5908
C12···H63.2881H8···H4iv3.5627
C13···H22.7408H14···Zn1ix3.4282
C13···H153.2430H14···Cl1ix3.1240
C13···H173.1793H14···Cl2ix2.8000
C14···H22.7638H14···C17v3.3974
C14···H163.2462H14···H6i3.1252
C15···H173.2283H14···H17v3.4623
C16···H143.2430H15···Cl1ix3.3230
C17···H153.2383H15···Cl2v2.8859
H2···H32.3072H15···N3v3.5289
H2···H142.2180H15···C16x3.1414
H4···H52.2965H15···H5xii3.5494
H5···H62.3581H15···H16x2.7302
H6···H72.2969H16···Cl1ii2.7231
H7···H82.5235H16···C1v3.5650
H14···H152.3422H16···C2v3.4158
H15···H162.3379H16···C15x3.1201
H16···H172.3279H16···C16x3.5802
Zn1···H14vi3.4282H16···H2v3.3215
Cl1···H4i3.0609H16···H5xii3.5093
Cl1···H6vii2.7717H16···H15x2.7302
Cl1···H14vi3.1240H16···H16x3.5584
Cl1···H15vi3.3230H17···Cl1ii3.4786
Cl1···H16ii2.7231H17···Cl2iii2.9212
Cl1···H17ii3.4786H17···C17ii3.5522
Cl2···H2vi3.2656H17···H2v3.5191
Cl2···H4iv3.2821H17···H14v3.4623
Cl2···H5iv3.0437H17···H17ii2.8125
Cl1—Zn1—Cl2117.48 (4)C7—C12—C8122.6 (3)
Cl1—Zn1—N1119.35 (6)C7—C12—C11118.8 (3)
Cl1—Zn1—N3112.79 (7)C8—C12—C11118.5 (3)
Cl2—Zn1—N1100.96 (7)N3—C13—C1115.2 (3)
Cl2—Zn1—N3120.36 (7)N3—C13—C14121.5 (3)
N1—Zn1—N379.60 (9)C1—C13—C14123.2 (3)
Zn1—N1—C1112.42 (17)C13—C14—C15119.4 (3)
Zn1—N1—C10125.4 (2)C14—C15—C16119.5 (3)
C1—N1—C10119.8 (3)C15—C16—C17118.7 (3)
C9—N2—C11117.8 (3)N3—C17—C16122.2 (3)
Zn1—N3—C13113.79 (17)C1—C2—H2120.136
Zn1—N3—C17127.4 (2)C3—C2—H2120.142
C13—N3—C17118.7 (3)C2—C3—H3120.126
N1—C1—C2122.0 (3)C9—C3—H3120.130
N1—C1—C13115.4 (3)C5—C4—H4119.588
C2—C1—C13122.6 (3)C11—C4—H4119.590
C1—C2—C3119.7 (3)C4—C5—H5119.377
C2—C3—C9119.7 (3)C6—C5—H5119.371
C5—C4—C11120.8 (3)C5—C6—H6119.860
C4—C5—C6121.3 (3)C7—C6—H6119.865
C5—C6—C7120.3 (3)C6—C7—H7119.612
C6—C7—C12120.8 (3)C12—C7—H7119.611
C10—C8—C12118.8 (3)C10—C8—H8120.577
N2—C9—C3119.6 (3)C12—C8—H8120.580
N2—C9—C10122.8 (3)C13—C14—H14120.314
C3—C9—C10117.6 (3)C15—C14—H14120.313
N1—C10—C8119.8 (3)C14—C15—H15120.273
N1—C10—C9121.0 (3)C16—C15—H15120.274
C8—C10—C9119.2 (3)C15—C16—H16120.642
N2—C11—C4119.1 (3)C17—C16—H16120.644
N2—C11—C12122.9 (3)N3—C17—H17118.876
C4—C11—C12118.0 (3)C16—C17—H17118.876
Cl1—Zn1—N1—C1126.99 (12)N1—C1—C13—C14163.5 (3)
Cl1—Zn1—N1—C1070.47 (18)C2—C1—C13—N3167.5 (3)
Cl1—Zn1—N3—C13126.73 (12)C2—C1—C13—C1415.5 (5)
Cl1—Zn1—N3—C1749.2 (2)C13—C1—C2—C3177.3 (3)
Cl2—Zn1—N1—C1102.62 (14)C1—C2—C3—C92.0 (5)
Cl2—Zn1—N1—C1059.92 (16)C2—C3—C9—N2177.4 (3)
Cl2—Zn1—N3—C1387.57 (15)C2—C3—C9—C103.8 (5)
Cl2—Zn1—N3—C1796.51 (17)C5—C4—C11—N2178.9 (3)
N1—Zn1—N3—C139.13 (14)C5—C4—C11—C120.3 (5)
N1—Zn1—N3—C17166.8 (2)C11—C4—C5—C60.6 (5)
N3—Zn1—N1—C116.58 (15)C4—C5—C6—C71.2 (5)
N3—Zn1—N1—C10179.12 (18)C5—C6—C7—C120.8 (5)
Zn1—N1—C1—C2160.27 (19)C6—C7—C12—C8179.3 (3)
Zn1—N1—C1—C1320.7 (3)C6—C7—C12—C110.1 (5)
Zn1—N1—C10—C820.7 (4)C10—C8—C12—C7178.7 (3)
Zn1—N1—C10—C9159.93 (17)C10—C8—C12—C110.5 (5)
C1—N1—C10—C8177.9 (3)C12—C8—C10—N1179.4 (3)
C1—N1—C10—C91.4 (4)C12—C8—C10—C90.1 (5)
C10—N1—C1—C23.4 (5)N2—C9—C10—N1179.1 (3)
C10—N1—C1—C13175.7 (3)N2—C9—C10—C80.2 (5)
C9—N2—C11—C4179.6 (3)C3—C9—C10—N12.1 (5)
C9—N2—C11—C120.4 (5)C3—C9—C10—C8178.5 (3)
C11—N2—C9—C3178.7 (3)N2—C11—C12—C7178.5 (3)
C11—N2—C9—C100.1 (5)N2—C11—C12—C80.7 (5)
Zn1—N3—C13—C11.2 (3)C4—C11—C12—C70.7 (5)
Zn1—N3—C13—C14178.26 (17)C4—C11—C12—C8179.9 (3)
Zn1—N3—C17—C16177.10 (16)N3—C13—C14—C151.2 (4)
C13—N3—C17—C161.4 (4)C1—C13—C14—C15175.6 (3)
C17—N3—C13—C1175.1 (2)C13—C14—C15—C160.1 (5)
C17—N3—C13—C142.0 (4)C14—C15—C16—C170.7 (5)
N1—C1—C2—C31.7 (5)C15—C16—C17—N30.0 (5)
N1—C1—C13—N313.5 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+2; (iii) x+1, y+2, z+2; (iv) x+2, y+2, z+1; (v) x+1, y+1, z+2; (vi) x, y+1, z; (vii) x+1, y+3, z+1; (viii) x+2, y+1, z+1; (ix) x, y1, z; (x) x, y+1, z+2; (xi) x+1, y+1, z1; (xii) x1, y1, z+1.
 

Acknowledgements

This work was supported in part by Grant-in-Aids for Scientific Research B (No. 26288024, KT) and for Scientific Research C (No. 25410067, HO) from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT).

References

First citationFukushima, T., Wada, T., Ohtsu, H. & Tanaka, K. (2010). Dalton Trans. 39, 11526–11534.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKoizumi, T.-a. & Tanaka, K. (2005). Angew. Chem. Int. Ed. 44, 5891–5894.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhtsu, H. & Tanaka, K. (2012a). Chem. Commun. 48, 1796–1798.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhtsu, H. & Tanaka, K. (2012b). Angew. Chem. Int. Ed. 51, 9792–9795.  Web of Science CrossRef CAS Google Scholar
First citationOhtsu, H., Tsuge, K. & Tanaka, K. (2015). J. Photochem. Photobiol. Chem. 313, 163–167.  Web of Science CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. Crystal Maker, Bicester, Oxfordshire, England.  Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds