metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ-bromido-bis­­[bromido­(4,4′-dihy­dr­oxy-2,2′-bi­pyridine-κ2N,N′)copper(II)]

CROSSMARK_Color_square_no_text.svg

aFlorida International University, Department of Chemistry and Biochemistry, 11200 SW 8th St., Miami, FL 33199-0001, USA
*Correspondence e-mail: arodr927@fiu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 June 2016; accepted 24 June 2016; online 12 July 2016)

The mol­ecules of the title compound, [Cu2Br4(C10H8N2O2)2], are centrosymmetric dimers. The CuII atom exhibits a distorted square-pyramidal coordination geometry, with two bridging bromide ligands and the N atoms of the 4,4′-dihy­droxy-2,2′-bi­pyridine chelate in the equatorial plane. ππ stacking and hydrogen-bonding inter­actions of the O—H⋯Br, C—H⋯·Br and C—H⋯O types consolidate the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The synthesis of the title compound is a variation of the one reported by Yang et al. (2014[Yang, H., Sun, X.-M. & Ren, X.-M. (2014). Polyhedron, 83, 24-29.]), using the corresponding bi­pyridine derivative. The asymmetric unit contains one half-mol­ecule which dimerizes and is related by an inversion center (Fig. 1[link]). Each CuII atom is five-coordinated in a square-pyramidal coordination geometry, with the two N atoms of the 4,4′-dihy­droxy-2,2′-bi­pyridine (DHBP) ligand and two bridging bromide ligands assuming equatorial positions and a terminal bromide ligand in the apical position. The Cu—Br bond involving the apical bromide ligand is considerably longer [2.6462 (12) Å] than the Cu—Br bonds to the bromide ligands in the equatorial positions [2.4458 (10) and 2.4647 (11) Å]. The crystal structure reveals ππ inter­actions between the pyridine rings of adjacent complex mol­ecules, with a centroid-to-centroid distance of 3.57 Å, as well as hydrogen bonding between the hy­droxy groups and the terminal bromide ligands. Additional C—H⋯X inter­actions (X = O, Br) are also found (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Br1i 0.93 2.81 3.373 (7) 120
C2—H2A⋯O1ii 0.93 2.56 3.390 (9) 149
C4—H4⋯Br1iii 0.93 3.11 3.707 (7) 123
C1—H1A⋯Br1 0.93 2.73 3.340 (7) 124
C7—H7⋯Br2iii 0.93 2.94 3.685 (7) 138
O1—H1⋯Br2iv 0.82 2.36 3.164 (5) 169
O2—H2⋯Br2iii 0.82 2.44 3.263 (5) 177
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The structure of [Cu2(μ-Br)2(DHBP)2(Br)2], showing displacement ellipsoids at the 50% probability level. All non-labeled atoms are generated by the symmetry code (−x + 2, −y + 2, −z + 1).
[Figure 2]
Figure 2
The crystal packing of [Cu2(μ-Br)2(DHBP)2(Br)2], showing the O—H⋯Br hydrogen bonding as red lines.

Synthesis and crystallization

CuBr2 (30 mg, 0.134 mmol) was dissolved in 10 ml of ethanol and the resulting solution added dropwise to a tetra­hydro­furan solution (10 ml) containing 50 mg (0.266 mmol) of di­hydroxy­bipyridine at room temperature. The mixture was stirred overnight to give a blue–green solution. Crystals were grown by layering the reaction solution over toluene.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu2Br4(C10H8N2O2)2]
Mr 823.09
Crystal system, space group Monoclinic, P21/c
Temperature (K) 300
a, b, c (Å) 8.0636 (7), 8.4278 (7), 17.2516 (14)
β (°) 91.820 (2)
V3) 1171.80 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 8.67
Crystal size (mm) 0.25 × 0.08 × 0.03
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.53, 0.79
No. of measured, independent and observed [I > 2σ(I)] reflections 15036, 2414, 1936
Rint 0.047
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.106, 1.16
No. of reflections 2414
No. of parameters 156
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.98, −0.76
Computer programs: APEX2 andSAINT (Bruker, 2013[Bruker (2013). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Di-µ-bromido-bis[bromido(4,4'-dihydroxy-2,2'-bipyridine-κ2N,N')copper(II)] top
Crystal data top
[Cu2Br4(C10H8N2O2)2]F(000) = 788
Mr = 823.09Dx = 2.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0636 (7) ÅCell parameters from 6190 reflections
b = 8.4278 (7) Åθ = 3.4–26.3°
c = 17.2516 (14) ŵ = 8.67 mm1
β = 91.820 (2)°T = 300 K
V = 1171.80 (17) Å3Plate, translucent light green-yellow
Z = 20.25 × 0.08 × 0.03 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
2414 independent reflections
Radiation source: fine-focus tube1936 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.047
φ and ω scansθmax = 26.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1010
Tmin = 0.53, Tmax = 0.79k = 1010
15036 measured reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0229P)2 + 10.5467P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
2414 reflectionsΔρmax = 0.98 e Å3
156 parametersΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.89203 (9)1.04991 (8)0.57654 (4)0.0314 (2)
Br20.62406 (10)0.95551 (9)0.39730 (5)0.0355 (2)
Cu10.86595 (11)0.82989 (9)0.48451 (5)0.0256 (2)
O20.8375 (8)0.2138 (6)0.3009 (3)0.0404 (14)
H20.78770.14660.32550.061*
O10.4946 (7)0.3622 (6)0.6850 (3)0.0400 (14)
H10.47600.28040.66050.060*
N20.8753 (7)0.6318 (6)0.4220 (3)0.0242 (12)
N10.7524 (7)0.6839 (6)0.5573 (3)0.0235 (12)
C60.8010 (8)0.5057 (7)0.4538 (4)0.0199 (13)
C50.7311 (8)0.5351 (8)0.5306 (4)0.0216 (14)
C70.7873 (9)0.3626 (8)0.4157 (4)0.0261 (15)
H70.73760.27640.43940.031*
C30.5822 (9)0.4625 (8)0.6417 (4)0.0259 (15)
C90.9252 (9)0.4769 (8)0.3099 (4)0.0300 (16)
H90.96970.47050.26090.036*
C10.6915 (9)0.7206 (9)0.6267 (4)0.0329 (17)
H1A0.70760.82250.64610.040*
C80.8481 (9)0.3480 (8)0.3422 (4)0.0280 (16)
C40.6459 (8)0.4215 (8)0.5713 (4)0.0235 (14)
H40.63190.31960.55150.028*
C20.6074 (10)0.6141 (9)0.6694 (4)0.0334 (17)
H2A0.56680.64340.71720.040*
C100.9346 (10)0.6144 (9)0.3518 (4)0.0332 (17)
H100.98600.70130.32960.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0407 (4)0.0218 (3)0.0324 (4)0.0124 (3)0.0112 (3)0.0071 (3)
Br20.0416 (4)0.0233 (4)0.0411 (5)0.0050 (3)0.0056 (3)0.0008 (3)
Cu10.0368 (5)0.0152 (4)0.0250 (4)0.0078 (4)0.0065 (3)0.0020 (3)
O20.074 (4)0.023 (3)0.025 (3)0.011 (3)0.018 (3)0.013 (2)
O10.060 (4)0.031 (3)0.030 (3)0.023 (3)0.017 (3)0.003 (2)
N20.033 (3)0.021 (3)0.020 (3)0.004 (2)0.007 (2)0.002 (2)
N10.031 (3)0.017 (3)0.023 (3)0.003 (2)0.004 (2)0.001 (2)
C60.018 (3)0.015 (3)0.026 (4)0.001 (2)0.000 (3)0.001 (3)
C50.023 (3)0.019 (3)0.023 (3)0.002 (3)0.003 (3)0.003 (3)
C70.032 (4)0.019 (3)0.027 (4)0.006 (3)0.003 (3)0.001 (3)
C30.031 (4)0.021 (3)0.026 (4)0.007 (3)0.002 (3)0.001 (3)
C90.044 (4)0.025 (4)0.021 (4)0.005 (3)0.007 (3)0.003 (3)
C10.038 (4)0.024 (4)0.037 (4)0.006 (3)0.012 (3)0.010 (3)
C80.030 (4)0.020 (3)0.035 (4)0.000 (3)0.006 (3)0.006 (3)
C40.029 (4)0.016 (3)0.026 (4)0.004 (3)0.002 (3)0.002 (3)
C20.046 (5)0.033 (4)0.021 (4)0.012 (3)0.012 (3)0.006 (3)
C100.048 (5)0.027 (4)0.025 (4)0.013 (3)0.008 (3)0.003 (3)
Geometric parameters (Å, º) top
Br1—Cu12.4458 (10)C6—C51.477 (9)
Br1—Cu1i2.4647 (11)C5—C41.382 (9)
Br2—Cu12.6462 (12)C7—C81.381 (10)
Cu1—N21.990 (5)C7—H70.9300
Cu1—N12.001 (5)C3—C21.376 (10)
Cu1—Br1i2.4647 (11)C3—C41.379 (9)
O2—C81.338 (8)C9—C101.367 (10)
O2—H20.8200C9—C81.378 (10)
O1—C31.343 (8)C9—H90.9300
O1—H10.8200C1—C21.356 (10)
N2—C101.324 (9)C1—H1A0.9300
N2—C61.346 (8)C4—H40.9300
N1—C11.344 (9)C2—H2A0.9300
N1—C51.345 (8)C10—H100.9300
C6—C71.376 (9)
Cu1—Br1—Cu1i95.00 (4)C6—C7—C8119.4 (6)
N2—Cu1—N181.4 (2)C6—C7—H7120.3
N2—Cu1—Br1169.65 (17)C8—C7—H7120.3
N1—Cu1—Br195.19 (16)O1—C3—C2117.8 (6)
N2—Cu1—Br1i93.97 (16)O1—C3—C4123.3 (6)
N1—Cu1—Br1i154.89 (17)C2—C3—C4118.9 (6)
Br1—Cu1—Br1i85.00 (4)C10—C9—C8118.2 (6)
N2—Cu1—Br293.88 (17)C10—C9—H9120.9
N1—Cu1—Br2105.01 (17)C8—C9—H9120.9
Br1—Cu1—Br296.45 (4)N1—C1—C2122.3 (7)
Br1i—Cu1—Br299.90 (4)N1—C1—H1A118.8
C8—O2—H2109.5C2—C1—H1A118.8
C3—O1—H1109.5O2—C8—C9118.3 (6)
C10—N2—C6117.6 (6)O2—C8—C7123.1 (6)
C10—N2—Cu1127.5 (5)C9—C8—C7118.6 (6)
C6—N2—Cu1114.7 (4)C3—C4—C5118.6 (6)
C1—N1—C5118.2 (6)C3—C4—H4120.7
C1—N1—Cu1127.2 (5)C5—C4—H4120.7
C5—N1—Cu1114.5 (4)C1—C2—C3119.8 (7)
N2—C6—C7121.9 (6)C1—C2—H2A120.1
N2—C6—C5114.8 (5)C3—C2—H2A120.1
C7—C6—C5123.3 (6)N2—C10—C9124.2 (7)
N1—C5—C4122.1 (6)N2—C10—H10117.9
N1—C5—C6114.6 (6)C9—C10—H10117.9
C4—C5—C6123.3 (6)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Br1i0.932.813.373 (7)120
C2—H2A···O1ii0.932.563.390 (9)149
C4—H4···Br1iii0.933.113.707 (7)123
C1—H1A···Br10.932.733.340 (7)124
C7—H7···Br2iii0.932.943.685 (7)138
O1—H1···Br2iv0.822.363.164 (5)169
O2—H2···Br2iii0.822.443.263 (5)177
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x, y1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

ARS was supported by NIH/NIGMS R25 GM061347. CA was supported by the Nuclear Regulatory Commission Scholarship grant NRC-HQ-13-G-38-0017 to FIU.

References

First citationBruker (2013). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H., Sun, X.-M. & Ren, X.-M. (2014). Polyhedron, 83, 24–29.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds