metal-organic compounds
Di-μ-bromido-bis[bromido(4,4′-dihydroxy-2,2′-bipyridine-κ2N,N′)copper(II)]
aFlorida International University, Department of Chemistry and Biochemistry, 11200 SW 8th St., Miami, FL 33199-0001, USA
*Correspondence e-mail: arodr927@fiu.edu
The molecules of the title compound, [Cu2Br4(C10H8N2O2)2], are centrosymmetric dimers. The CuII atom exhibits a distorted square-pyramidal coordination geometry, with two bridging bromide ligands and the N atoms of the 4,4′-dihydroxy-2,2′-bipyridine chelate in the equatorial plane. π–π stacking and hydrogen-bonding interactions of the O—H⋯Br, C—H⋯·Br and C—H⋯O types consolidate the crystal packing.
CCDC reference: 1487651
Structure description
The synthesis of the title compound is a variation of the one reported by Yang et al. (2014), using the corresponding bipyridine derivative. The contains one half-molecule which dimerizes and is related by an inversion center (Fig. 1). Each CuII atom is five-coordinated in a square-pyramidal coordination geometry, with the two N atoms of the 4,4′-dihydroxy-2,2′-bipyridine (DHBP) ligand and two bridging bromide ligands assuming equatorial positions and a terminal bromide ligand in the apical position. The Cu—Br bond involving the apical bromide ligand is considerably longer [2.6462 (12) Å] than the Cu—Br bonds to the bromide ligands in the equatorial positions [2.4458 (10) and 2.4647 (11) Å]. The reveals π–π interactions between the pyridine rings of adjacent complex molecules, with a centroid-to-centroid distance of 3.57 Å, as well as hydrogen bonding between the hydroxy groups and the terminal bromide ligands. Additional C—H⋯X interactions (X = O, Br) are also found (Fig. 2 and Table 1).
Synthesis and crystallization
CuBr2 (30 mg, 0.134 mmol) was dissolved in 10 ml of ethanol and the resulting solution added dropwise to a tetrahydrofuran solution (10 ml) containing 50 mg (0.266 mmol) of dihydroxybipyridine at room temperature. The mixture was stirred overnight to give a blue–green solution. Crystals were grown by layering the reaction solution over toluene.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1487651
https://doi.org/10.1107/S2414314616010294/wm4018sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616010294/wm4018Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616010294/wm4018Isup3.cdx
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu2Br4(C10H8N2O2)2] | F(000) = 788 |
Mr = 823.09 | Dx = 2.333 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0636 (7) Å | Cell parameters from 6190 reflections |
b = 8.4278 (7) Å | θ = 3.4–26.3° |
c = 17.2516 (14) Å | µ = 8.67 mm−1 |
β = 91.820 (2)° | T = 300 K |
V = 1171.80 (17) Å3 | Plate, translucent light green-yellow |
Z = 2 | 0.25 × 0.08 × 0.03 mm |
Bruker D8 Quest CMOS diffractometer | 2414 independent reflections |
Radiation source: fine-focus tube | 1936 reflections with I > 2σ(I) |
Detector resolution: 10.4167 pixels mm-1 | Rint = 0.047 |
φ and ω scans | θmax = 26.5°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −10→10 |
Tmin = 0.53, Tmax = 0.79 | k = −10→10 |
15036 measured reflections | l = −21→21 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0229P)2 + 10.5467P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max = 0.001 |
2414 reflections | Δρmax = 0.98 e Å−3 |
156 parameters | Δρmin = −0.76 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.89203 (9) | 1.04991 (8) | 0.57654 (4) | 0.0314 (2) | |
Br2 | 0.62406 (10) | 0.95551 (9) | 0.39730 (5) | 0.0355 (2) | |
Cu1 | 0.86595 (11) | 0.82989 (9) | 0.48451 (5) | 0.0256 (2) | |
O2 | 0.8375 (8) | 0.2138 (6) | 0.3009 (3) | 0.0404 (14) | |
H2 | 0.7877 | 0.1466 | 0.3255 | 0.061* | |
O1 | 0.4946 (7) | 0.3622 (6) | 0.6850 (3) | 0.0400 (14) | |
H1 | 0.4760 | 0.2804 | 0.6605 | 0.060* | |
N2 | 0.8753 (7) | 0.6318 (6) | 0.4220 (3) | 0.0242 (12) | |
N1 | 0.7524 (7) | 0.6839 (6) | 0.5573 (3) | 0.0235 (12) | |
C6 | 0.8010 (8) | 0.5057 (7) | 0.4538 (4) | 0.0199 (13) | |
C5 | 0.7311 (8) | 0.5351 (8) | 0.5306 (4) | 0.0216 (14) | |
C7 | 0.7873 (9) | 0.3626 (8) | 0.4157 (4) | 0.0261 (15) | |
H7 | 0.7376 | 0.2764 | 0.4394 | 0.031* | |
C3 | 0.5822 (9) | 0.4625 (8) | 0.6417 (4) | 0.0259 (15) | |
C9 | 0.9252 (9) | 0.4769 (8) | 0.3099 (4) | 0.0300 (16) | |
H9 | 0.9697 | 0.4705 | 0.2609 | 0.036* | |
C1 | 0.6915 (9) | 0.7206 (9) | 0.6267 (4) | 0.0329 (17) | |
H1A | 0.7076 | 0.8225 | 0.6461 | 0.040* | |
C8 | 0.8481 (9) | 0.3480 (8) | 0.3422 (4) | 0.0280 (16) | |
C4 | 0.6459 (8) | 0.4215 (8) | 0.5713 (4) | 0.0235 (14) | |
H4 | 0.6319 | 0.3196 | 0.5515 | 0.028* | |
C2 | 0.6074 (10) | 0.6141 (9) | 0.6694 (4) | 0.0334 (17) | |
H2A | 0.5668 | 0.6434 | 0.7172 | 0.040* | |
C10 | 0.9346 (10) | 0.6144 (9) | 0.3518 (4) | 0.0332 (17) | |
H10 | 0.9860 | 0.7013 | 0.3296 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0407 (4) | 0.0218 (3) | 0.0324 (4) | −0.0124 (3) | 0.0112 (3) | −0.0071 (3) |
Br2 | 0.0416 (4) | 0.0233 (4) | 0.0411 (5) | −0.0050 (3) | −0.0056 (3) | 0.0008 (3) |
Cu1 | 0.0368 (5) | 0.0152 (4) | 0.0250 (4) | −0.0078 (4) | 0.0065 (3) | −0.0020 (3) |
O2 | 0.074 (4) | 0.023 (3) | 0.025 (3) | −0.011 (3) | 0.018 (3) | −0.013 (2) |
O1 | 0.060 (4) | 0.031 (3) | 0.030 (3) | −0.023 (3) | 0.017 (3) | −0.003 (2) |
N2 | 0.033 (3) | 0.021 (3) | 0.020 (3) | −0.004 (2) | 0.007 (2) | −0.002 (2) |
N1 | 0.031 (3) | 0.017 (3) | 0.023 (3) | −0.003 (2) | 0.004 (2) | 0.001 (2) |
C6 | 0.018 (3) | 0.015 (3) | 0.026 (4) | 0.001 (2) | 0.000 (3) | −0.001 (3) |
C5 | 0.023 (3) | 0.019 (3) | 0.023 (3) | −0.002 (3) | 0.003 (3) | −0.003 (3) |
C7 | 0.032 (4) | 0.019 (3) | 0.027 (4) | −0.006 (3) | 0.003 (3) | −0.001 (3) |
C3 | 0.031 (4) | 0.021 (3) | 0.026 (4) | −0.007 (3) | 0.002 (3) | −0.001 (3) |
C9 | 0.044 (4) | 0.025 (4) | 0.021 (4) | −0.005 (3) | 0.007 (3) | −0.003 (3) |
C1 | 0.038 (4) | 0.024 (4) | 0.037 (4) | −0.006 (3) | 0.012 (3) | −0.010 (3) |
C8 | 0.030 (4) | 0.020 (3) | 0.035 (4) | 0.000 (3) | 0.006 (3) | −0.006 (3) |
C4 | 0.029 (4) | 0.016 (3) | 0.026 (4) | −0.004 (3) | 0.002 (3) | −0.002 (3) |
C2 | 0.046 (5) | 0.033 (4) | 0.021 (4) | −0.012 (3) | 0.012 (3) | −0.006 (3) |
C10 | 0.048 (5) | 0.027 (4) | 0.025 (4) | −0.013 (3) | 0.008 (3) | 0.003 (3) |
Br1—Cu1 | 2.4458 (10) | C6—C5 | 1.477 (9) |
Br1—Cu1i | 2.4647 (11) | C5—C4 | 1.382 (9) |
Br2—Cu1 | 2.6462 (12) | C7—C8 | 1.381 (10) |
Cu1—N2 | 1.990 (5) | C7—H7 | 0.9300 |
Cu1—N1 | 2.001 (5) | C3—C2 | 1.376 (10) |
Cu1—Br1i | 2.4647 (11) | C3—C4 | 1.379 (9) |
O2—C8 | 1.338 (8) | C9—C10 | 1.367 (10) |
O2—H2 | 0.8200 | C9—C8 | 1.378 (10) |
O1—C3 | 1.343 (8) | C9—H9 | 0.9300 |
O1—H1 | 0.8200 | C1—C2 | 1.356 (10) |
N2—C10 | 1.324 (9) | C1—H1A | 0.9300 |
N2—C6 | 1.346 (8) | C4—H4 | 0.9300 |
N1—C1 | 1.344 (9) | C2—H2A | 0.9300 |
N1—C5 | 1.345 (8) | C10—H10 | 0.9300 |
C6—C7 | 1.376 (9) | ||
Cu1—Br1—Cu1i | 95.00 (4) | C6—C7—C8 | 119.4 (6) |
N2—Cu1—N1 | 81.4 (2) | C6—C7—H7 | 120.3 |
N2—Cu1—Br1 | 169.65 (17) | C8—C7—H7 | 120.3 |
N1—Cu1—Br1 | 95.19 (16) | O1—C3—C2 | 117.8 (6) |
N2—Cu1—Br1i | 93.97 (16) | O1—C3—C4 | 123.3 (6) |
N1—Cu1—Br1i | 154.89 (17) | C2—C3—C4 | 118.9 (6) |
Br1—Cu1—Br1i | 85.00 (4) | C10—C9—C8 | 118.2 (6) |
N2—Cu1—Br2 | 93.88 (17) | C10—C9—H9 | 120.9 |
N1—Cu1—Br2 | 105.01 (17) | C8—C9—H9 | 120.9 |
Br1—Cu1—Br2 | 96.45 (4) | N1—C1—C2 | 122.3 (7) |
Br1i—Cu1—Br2 | 99.90 (4) | N1—C1—H1A | 118.8 |
C8—O2—H2 | 109.5 | C2—C1—H1A | 118.8 |
C3—O1—H1 | 109.5 | O2—C8—C9 | 118.3 (6) |
C10—N2—C6 | 117.6 (6) | O2—C8—C7 | 123.1 (6) |
C10—N2—Cu1 | 127.5 (5) | C9—C8—C7 | 118.6 (6) |
C6—N2—Cu1 | 114.7 (4) | C3—C4—C5 | 118.6 (6) |
C1—N1—C5 | 118.2 (6) | C3—C4—H4 | 120.7 |
C1—N1—Cu1 | 127.2 (5) | C5—C4—H4 | 120.7 |
C5—N1—Cu1 | 114.5 (4) | C1—C2—C3 | 119.8 (7) |
N2—C6—C7 | 121.9 (6) | C1—C2—H2A | 120.1 |
N2—C6—C5 | 114.8 (5) | C3—C2—H2A | 120.1 |
C7—C6—C5 | 123.3 (6) | N2—C10—C9 | 124.2 (7) |
N1—C5—C4 | 122.1 (6) | N2—C10—H10 | 117.9 |
N1—C5—C6 | 114.6 (6) | C9—C10—H10 | 117.9 |
C4—C5—C6 | 123.3 (6) |
Symmetry code: (i) −x+2, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···Br1i | 0.93 | 2.81 | 3.373 (7) | 120 |
C2—H2A···O1ii | 0.93 | 2.56 | 3.390 (9) | 149 |
C4—H4···Br1iii | 0.93 | 3.11 | 3.707 (7) | 123 |
C1—H1A···Br1 | 0.93 | 2.73 | 3.340 (7) | 124 |
C7—H7···Br2iii | 0.93 | 2.94 | 3.685 (7) | 138 |
O1—H1···Br2iv | 0.82 | 2.36 | 3.164 (5) | 169 |
O2—H2···Br2iii | 0.82 | 2.44 | 3.263 (5) | 177 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, y+1/2, −z+3/2; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
ARS was supported by NIH/NIGMS R25 GM061347. CA was supported by the Nuclear Regulatory Commission Scholarship grant NRC-HQ-13-G-38-0017 to FIU.
References
Bruker (2013). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, H., Sun, X.-M. & Ren, X.-M. (2014). Polyhedron, 83, 24–29. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.