organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-(2,4-Di­chloro­phen­­oxy)-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde

CROSSMARK_Color_square_no_text.svg

aPURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, bDepartment of Post-Graduate and Research In Chemistry, Mangalagangori, Mangalore University, India, cDepartment of Material Science, Mangalore University, Mangaluru 574 199, India, and dDepartment of Chemistry, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: khalil.i@najah.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 6 July 2016; accepted 8 July 2016; online 22 July 2016)

In the crystal structure of the title compound, C17H12Cl2N2O2, the pyrazole ring makes dihedral angles of 65.0 (2) and 43.9 (2)° with the di­chloro­phenyl and phenyl rings, respectively. The dihedral angle between the chloro­phenyl and phenyl rings is 59.1 (2)°. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds and weak C—Cl⋯π and C—H⋯π inter­actions, generating a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of a research project on the synthesis and crystal structure determination of pyrazole derivatives, the structure of 5-(2,4-di­chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde is reported (Fig. 1[link]).

[Figure 1]
Figure 1
A view of the title mol­ecule, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The pyrazole (C1–C3/N1/N2) ring makes dihedral angles of 65.0 (2) and 43.9 (2)° with the di­chloro­phenyl (C12–C17) and phenyl (C4–C9) rings, respectively. The chloro­phenyl ring makes a dihedral angle of 59.1 (2)° with the phenyl ring. In the crystal (Fig. 2[link]), mol­ecules are connected via C8—H8⋯O2i hydrogen bonds (Table 1[link]). In addition, weak C—H⋯π inter­actions are observed [C13—H13⋯Cg2ii, with H13⋯Cg2ii = 2.95 Å, and C15—Cl2⋯Cg1iii, with Cl2⋯Cg1iii = 3.582 (4) Å; Cg1 and Cg2 are the centroids of the C1–C3/N1/N2 and C4–C9 rings, respectively; symmetry codes: (ii) −x + 1, −y − 1, −z + 1; (iii) x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.50 3.297 (6) 144
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are drawn as dashed lines.

Synthesis and crystallization

5-Chloro-4-formyl-3-methyl-1-phenyl-1H-pyrazole (0.1 mmol) and 2,4-di­chloro­phenol (0.1 mmol) were dissolved in dimethyl sulfoxide in a round-bottomed flask and the solution refluxed for 4 h. After completion of the reaction, the reaction mixture was poured into crushed ice. The solid obtained was recrystallized from ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H12Cl2N2O2
Mr 347.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 10.113 (8), 13.278 (10), 12.224 (10)
β (°) 102.219 (15)
V3) 1604 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.32 × 0.23 × 0.21
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (NUMABS; Rigaku 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.891, 0.916
No. of measured, independent and observed [I > 2σ(I)] reflections 12776, 2911, 2127
Rint 0.059
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.182, 1.21
No. of reflections 2911
No. of parameters 209
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.20
Computer programs: CrystalClear SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear SM Expert (Rigaku, 2011); cell refinement: CrystalClear SM Expert (Rigaku, 2011); data reduction: CrystalClear SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-(2,4-Dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde top
Crystal data top
C17H12Cl2N2O2F(000) = 712
Mr = 347.19Dx = 1.438 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 10.113 (8) ÅCell parameters from 2911 reflections
b = 13.278 (10) Åθ = 3.1–25.3°
c = 12.224 (10) ŵ = 0.42 mm1
β = 102.219 (15)°T = 293 K
V = 1604 (2) Å3Block, brown
Z = 40.32 × 0.23 × 0.21 mm
Data collection top
Rigaku Saturn724+
diffractometer
Rint = 0.059
profile data from ω–scansθmax = 25.3°, θmin = 3.1°
Absorption correction: multi-scan
(NUMABS; Rigaku 1999)
h = 1212
Tmin = 0.891, Tmax = 0.916k = 1515
12776 measured reflectionsl = 1414
2911 independent reflections2911 standard reflections
2127 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.0764P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
2911 reflectionsΔρmax = 0.22 e Å3
209 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00103 (11)0.17058 (9)0.30659 (9)0.0662 (4)
Cl20.06627 (12)0.10625 (11)0.72543 (11)0.0819 (5)
O10.2843 (2)0.1852 (2)0.4076 (2)0.0520 (8)
O20.2891 (4)0.3853 (3)0.5424 (3)0.0861 (11)
N10.6373 (3)0.2049 (3)0.4479 (3)0.0514 (9)
N20.5120 (3)0.1601 (2)0.4098 (3)0.0442 (8)
C10.6133 (4)0.2838 (3)0.5059 (3)0.0506 (10)
C20.4743 (4)0.2941 (3)0.5058 (3)0.0459 (10)
C30.4154 (3)0.2133 (3)0.4444 (3)0.0439 (10)
C40.4995 (3)0.0817 (3)0.3285 (3)0.0428 (9)
C50.4137 (3)0.0008 (3)0.3318 (3)0.0500 (10)
H50.36650.00480.38910.060*
C60.3992 (4)0.0712 (3)0.2491 (4)0.0563 (11)
H60.34140.12540.25020.068*
C70.4700 (4)0.0635 (4)0.1646 (4)0.0579 (11)
H70.45900.11200.10850.070*
C80.5571 (4)0.0161 (3)0.1633 (3)0.0540 (11)
H80.60580.02080.10690.065*
C90.5721 (4)0.0887 (3)0.2453 (3)0.0496 (10)
H90.63110.14240.24460.060*
C100.7282 (4)0.3492 (4)0.5623 (4)0.0782 (15)
H10A0.81220.32030.55320.117*
H10B0.72790.35430.64060.117*
H10C0.71820.41510.52920.117*
C110.4077 (5)0.3774 (4)0.5475 (3)0.0631 (12)
H110.46240.42970.58160.076*
C120.2070 (3)0.1646 (3)0.4873 (3)0.0423 (9)
C130.2603 (4)0.1510 (3)0.5986 (3)0.0590 (12)
H130.35350.15430.62500.071*
C140.1764 (4)0.1322 (4)0.6723 (4)0.0595 (12)
H140.21280.12380.74830.071*
C150.0396 (4)0.1260 (3)0.6325 (4)0.0506 (10)
C160.0160 (4)0.1374 (3)0.5201 (3)0.0477 (10)
H160.10900.13260.49360.057*
C170.0686 (4)0.1561 (3)0.4475 (3)0.0403 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0528 (7)0.0950 (9)0.0438 (6)0.0045 (6)0.0053 (5)0.0044 (6)
Cl20.0684 (8)0.1111 (11)0.0782 (9)0.0020 (7)0.0425 (7)0.0116 (7)
O10.0324 (14)0.086 (2)0.0388 (15)0.0022 (13)0.0103 (12)0.0021 (14)
O20.078 (2)0.101 (3)0.082 (3)0.036 (2)0.022 (2)0.0045 (19)
N10.0301 (17)0.062 (2)0.059 (2)0.0052 (16)0.0033 (15)0.0077 (18)
N20.0282 (16)0.056 (2)0.0470 (19)0.0018 (14)0.0037 (14)0.0067 (16)
C10.045 (2)0.055 (3)0.049 (2)0.003 (2)0.003 (2)0.000 (2)
C20.046 (2)0.055 (2)0.036 (2)0.006 (2)0.0070 (18)0.0007 (19)
C30.0322 (19)0.061 (3)0.039 (2)0.0055 (19)0.0094 (17)0.006 (2)
C40.0347 (19)0.050 (2)0.044 (2)0.0021 (18)0.0087 (18)0.0028 (19)
C50.032 (2)0.064 (3)0.056 (3)0.0037 (19)0.0126 (19)0.008 (2)
C60.041 (2)0.054 (3)0.073 (3)0.006 (2)0.010 (2)0.009 (2)
C70.050 (2)0.069 (3)0.051 (3)0.006 (2)0.005 (2)0.008 (2)
C80.054 (2)0.063 (3)0.049 (3)0.006 (2)0.018 (2)0.006 (2)
C90.046 (2)0.051 (2)0.056 (3)0.0064 (19)0.020 (2)0.004 (2)
C100.063 (3)0.075 (3)0.093 (4)0.015 (2)0.008 (3)0.016 (3)
C110.073 (3)0.075 (3)0.040 (2)0.009 (3)0.010 (2)0.004 (2)
C120.0315 (19)0.055 (2)0.042 (2)0.0054 (17)0.0122 (17)0.0004 (19)
C130.032 (2)0.095 (3)0.048 (3)0.006 (2)0.0052 (19)0.009 (2)
C140.046 (2)0.088 (3)0.046 (2)0.008 (2)0.014 (2)0.012 (2)
C150.048 (2)0.056 (3)0.054 (3)0.007 (2)0.025 (2)0.006 (2)
C160.032 (2)0.051 (2)0.062 (3)0.0007 (18)0.013 (2)0.004 (2)
C170.038 (2)0.042 (2)0.040 (2)0.0042 (17)0.0074 (17)0.0027 (17)
Geometric parameters (Å, º) top
Cl1—C171.728 (4)C7—H70.9300
Cl2—C151.737 (4)C7—C81.378 (6)
O1—C31.359 (4)C8—H80.9300
O1—C121.399 (4)C8—C91.376 (6)
O2—C111.193 (5)C9—H90.9300
N1—N21.387 (4)C10—H10A0.9600
N1—C11.316 (5)C10—H10B0.9600
N2—C31.344 (4)C10—H10C0.9600
N2—C41.426 (5)C11—H110.9300
C1—C21.411 (5)C12—C131.366 (5)
C1—C101.498 (6)C12—C171.385 (5)
C2—C31.371 (5)C13—H130.9300
C2—C111.443 (6)C13—C141.385 (5)
C4—C51.387 (5)C14—H140.9300
C4—C91.378 (5)C14—C151.369 (6)
C5—H50.9300C15—C161.379 (6)
C5—C61.376 (6)C16—H160.9300
C6—H60.9300C16—C171.380 (5)
C6—C71.379 (6)
C3—O1—C12118.2 (3)C8—C9—C4119.8 (4)
C1—N1—N2105.2 (3)C8—C9—H9120.1
N1—N2—C4119.1 (3)C1—C10—H10A109.5
C3—N2—N1110.0 (3)C1—C10—H10B109.5
C3—N2—C4129.8 (3)C1—C10—H10C109.5
N1—C1—C2112.0 (3)H10A—C10—H10B109.5
N1—C1—C10119.8 (4)H10A—C10—H10C109.5
C2—C1—C10128.3 (4)H10B—C10—H10C109.5
C1—C2—C11127.8 (4)O2—C11—C2126.1 (5)
C3—C2—C1104.0 (3)O2—C11—H11117.0
C3—C2—C11127.7 (4)C2—C11—H11117.0
O1—C3—C2132.6 (3)C13—C12—O1124.0 (3)
N2—C3—O1118.3 (3)C13—C12—C17119.7 (3)
N2—C3—C2108.8 (3)C17—C12—O1116.3 (3)
C5—C4—N2120.6 (3)C12—C13—H13119.8
C9—C4—N2118.8 (3)C12—C13—C14120.3 (4)
C9—C4—C5120.5 (4)C14—C13—H13119.8
C4—C5—H5120.4C13—C14—H14120.3
C6—C5—C4119.1 (4)C15—C14—C13119.5 (4)
C6—C5—H5120.4C15—C14—H14120.3
C5—C6—H6119.8C14—C15—Cl2119.5 (3)
C5—C6—C7120.5 (4)C14—C15—C16121.0 (4)
C7—C6—H6119.8C16—C15—Cl2119.4 (3)
C6—C7—H7120.0C15—C16—H16120.5
C8—C7—C6120.0 (4)C15—C16—C17118.9 (3)
C8—C7—H7120.0C17—C16—H16120.5
C7—C8—H8119.9C12—C17—Cl1120.6 (3)
C9—C8—C7120.1 (4)C16—C17—Cl1118.9 (3)
C9—C8—H8119.9C16—C17—C12120.5 (4)
C4—C9—H9120.1
Cl2—C15—C16—C17178.1 (3)C4—N2—C3—O17.3 (6)
O1—C12—C13—C14179.1 (4)C4—N2—C3—C2167.6 (4)
O1—C12—C17—Cl10.0 (5)C4—C5—C6—C70.5 (6)
O1—C12—C17—C16179.0 (3)C5—C4—C9—C81.5 (6)
N1—N2—C3—O1174.9 (3)C5—C6—C7—C80.7 (6)
N1—N2—C3—C20.0 (4)C6—C7—C8—C90.9 (6)
N1—N2—C4—C5143.8 (4)C7—C8—C9—C40.2 (6)
N1—N2—C4—C937.6 (5)C9—C4—C5—C61.6 (6)
N1—C1—C2—C31.2 (4)C10—C1—C2—C3178.6 (4)
N1—C1—C2—C11171.3 (4)C10—C1—C2—C118.9 (7)
N2—N1—C1—C21.1 (4)C11—C2—C3—O12.0 (7)
N2—N1—C1—C10178.6 (4)C11—C2—C3—N2171.8 (4)
N2—C4—C5—C6177.0 (3)C12—O1—C3—N2124.8 (3)
N2—C4—C9—C8177.2 (3)C12—O1—C3—C261.9 (5)
C1—N1—N2—C30.7 (4)C12—C13—C14—C150.9 (7)
C1—N1—N2—C4169.8 (3)C13—C12—C17—Cl1178.8 (3)
C1—C2—C3—O1174.5 (4)C13—C12—C17—C162.3 (6)
C1—C2—C3—N20.7 (4)C13—C14—C15—Cl2178.0 (3)
C1—C2—C11—O2177.0 (4)C13—C14—C15—C160.5 (7)
C3—O1—C12—C1313.8 (5)C14—C15—C16—C170.5 (6)
C3—O1—C12—C17167.5 (3)C15—C16—C17—Cl1179.9 (3)
C3—N2—C4—C549.5 (6)C15—C16—C17—C120.9 (5)
C3—N2—C4—C9129.1 (4)C17—C12—C13—C142.2 (6)
C3—C2—C11—O26.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.503.297 (6)144
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

Authors thank DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds