organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-4-methyl­pyridinium 2-(3-methyl­phen­yl)acetate

CROSSMARK_Color_square_no_text.svg

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, cDepartment of Physics, Alagappa University, Karaikkudi 630 003, India, and dPost graduate and Research Department of Physics, The American college, Madurai 625 002, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 5 July 2016; accepted 6 July 2016; online 12 July 2016)

In the title mol­ecular salt, C6H9N2+·C9H9O2, the cation is protonated at the pyridine N atom and the anion is deprotonated at the hy­droxy O atom. The dihedral angle between the benzene and pyridine rings is 66.58 (10)°. In the mol­ecular structure, a pair of N—H⋯O hydrogen bonds links the anion and cation, generating an R22(8) ring motif. These ring motifs are connected to adjacent anions and cations via inter­molecular N—H⋯O hydrogen bonding, generating a bifurcated R22(8) ring motif. C—H⋯O, C—H⋯π and ππ [centroid-to-centroid distances = 3.7053 (11) and 3.9547 (13) Å] inter­actions lead to the formation of a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine derivatives exhibit anti­fungal, anti­cancer and anti-inflammatory activities (Luo & Hu, 2006[Luo, Y. & Hu, Y. (2006). Arch. Pharm. Chem. Life Sci. 339, 262-266.]; Liu & Hu, 2002[Liu, T. & Hu, Y. (2002). Bioorg. Med. Chem. Lett. 12, 2411-2413.]). We herein report the synthesis and the crystal structure of the title compound (Fig. 1[link]). The geometric parameters are comparable with those reported for similar structures (Divya Bharathi et al., 2015[Divya Bharathi, M., Ahila, G., Mohana, J., Chakkaravarthi, G. & Anbalagan, G. (2015). Acta Cryst. E71, o261-o262.]; Sivakumar et al., 2016[Sivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160747.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, showing the atom labelling and 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.

The asymmetric unit of (Fig. 1[link]) consists of a 2-amino-4-methyl­pyridinium cation, which is protonated at atom N1, and a 3-methyl­phenyl­acetate anion, which is deprotonated at the hy­droxy O atom. The dihedral angle between the benzene ring (C1–C6) and the pyridine ring (N2/C10–C14) is 66.58 (10)°. N1—H1⋯O1 and N2—H2A⋯O2 hydrogen bonds (Table 1[link]) link the anion and cation, generating an R22(8) ring motif (Fig. 2[link]). These ring motifs are connected with adjacent anions and cations via N2—H2B⋯O2i hydrogen bonds (Table 1[link]), generating a bifurcated R22(8) ring motif (Fig. 2[link]). Inter­molecular C—H⋯O, C—H⋯π (Table 1[link]) and ππ [Cg1⋯Cg1i = 3.9547 (13) Å; Cg2⋯Cg2 = 3.7053 (11) Å; symmetry odes: (i) 1 − x, 2 − y, 1 − z; (ii) −x, 1 − y, −z; Cg1 and Cg2 are the centroids of the rings (C1–C6) and (N2/C10–C14), respectively] inter­actions lead to the formation of a three dimensional network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 (2) 1.75 (2) 2.627 (2) 172 (2)
N2—H2A⋯O2 0.86 2.01 2.845 (2) 163
N2—H2B⋯O2i 0.86 2.10 2.829 (2) 142
C14—H14⋯O1ii 0.93 2.43 3.347 (2) 168
C11—H11⋯Cg1i 0.93 2.81 3.706 (2) 161
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+2, -z.
[Figure 2]
Figure 2
A partial view of the crystal packing of the title mol­ecular salt, showing the ring graph-set motifs. Hydrogen bonds are shown as dashed lines and C-bound H atoms which are not involved in inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines and C-bound H atoms which are not involved in inter­actions have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized using the raw materials m-tolyl­acetic acid (1.001 g) and 2-amino-4-methyl­pyridine (0.72 g) in an equimolar ratio. These reactants were dissolved in 15 ml acetone and kept for slow evaporation at room temperature. Crystals suitable for X-ray diffraction were harvested after two weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H9N2+·C9H9O2
Mr 258.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.3253 (4), 9.5065 (5), 9.5909 (5)
α, β, γ (°) 85.526 (3), 70.885 (3), 78.863 (3)
V3) 703.62 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.26 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.979, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 15018, 3059, 1885
Rint 0.035
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.150, 1.02
No. of reflections 3059
No. of parameters 178
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

2-Amino-4-methylpyridinium 2-(3-methylphenyl)acetate top
Crystal data top
C6H9N2+·C9H9O2Z = 2
Mr = 258.31F(000) = 276
Triclinic, P1Dx = 1.219 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3253 (4) ÅCell parameters from 4380 reflections
b = 9.5065 (5) Åθ = 2.2–27.0°
c = 9.5909 (5) ŵ = 0.08 mm1
α = 85.526 (3)°T = 293 K
β = 70.885 (3)°Block, colourless
γ = 78.863 (3)°0.26 × 0.24 × 0.20 mm
V = 703.62 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3059 independent reflections
Radiation source: fine-focus sealed tube1885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scanθmax = 27.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.979, Tmax = 0.984k = 1212
15018 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.2177P]
where P = (Fo2 + 2Fc2)/3
3059 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4822 (2)0.8660 (2)0.3042 (2)0.0475 (5)
C20.6275 (3)0.9154 (2)0.3021 (2)0.0490 (5)
H20.66630.98570.23290.059*
C30.7182 (3)0.8647 (2)0.3985 (2)0.0558 (6)
C40.6600 (3)0.7610 (3)0.4989 (3)0.0699 (6)
H40.71800.72610.56590.084*
C50.5160 (4)0.7072 (3)0.5021 (3)0.0730 (7)
H50.47870.63560.57010.088*
C60.4279 (3)0.7596 (2)0.4047 (3)0.0619 (6)
H60.33120.72300.40690.074*
C70.8749 (3)0.9245 (3)0.3939 (3)0.0870 (9)
H7A0.84171.02470.41620.131*
H7B0.95860.91210.29730.131*
H7C0.92430.87470.46540.131*
C80.3800 (3)0.9344 (2)0.2050 (3)0.0600 (6)
H8A0.26650.97840.26720.072*
H8B0.43601.01110.14920.072*
C90.3557 (2)0.83992 (19)0.0971 (2)0.0458 (5)
C100.2100 (2)0.58859 (19)0.1350 (2)0.0409 (4)
C110.1335 (2)0.5018 (2)0.1964 (2)0.0443 (5)
H110.19230.41060.22830.053*
C120.0260 (2)0.5491 (2)0.2101 (2)0.0447 (5)
C130.1123 (3)0.6872 (2)0.1610 (2)0.0526 (5)
H130.22180.72170.16800.063*
C140.0352 (3)0.7693 (2)0.1038 (2)0.0524 (5)
H140.09210.86100.07200.063*
C150.1096 (3)0.4565 (2)0.2745 (3)0.0619 (6)
H15A0.08760.47910.37760.093*
H15B0.23200.47350.22460.093*
H15C0.06300.35750.26240.093*
N10.1233 (2)0.72080 (16)0.09179 (18)0.0446 (4)
N20.3643 (2)0.54781 (18)0.1174 (2)0.0547 (5)
H2A0.40590.60540.07940.066*
H2B0.42260.46380.14410.066*
O10.23722 (19)0.88996 (14)0.04377 (17)0.0591 (4)
O20.45236 (18)0.72287 (15)0.06398 (18)0.0653 (5)
H10.170 (2)0.7762 (19)0.053 (2)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0480 (11)0.0395 (10)0.0534 (12)0.0016 (9)0.0159 (9)0.0084 (9)
C20.0526 (11)0.0435 (11)0.0482 (12)0.0073 (9)0.0121 (9)0.0053 (9)
C30.0525 (12)0.0572 (13)0.0575 (14)0.0028 (10)0.0204 (10)0.0190 (11)
C40.0866 (15)0.0690 (16)0.0532 (14)0.0105 (12)0.0327 (13)0.0107 (12)
C50.0947 (17)0.0595 (14)0.0528 (14)0.0116 (12)0.0110 (13)0.0098 (12)
C60.0562 (13)0.0530 (13)0.0717 (16)0.0133 (10)0.0109 (11)0.0044 (12)
C70.0654 (15)0.096 (2)0.110 (2)0.0045 (14)0.0388 (15)0.0381 (17)
C80.0659 (13)0.0416 (11)0.0808 (16)0.0003 (10)0.0380 (12)0.0078 (11)
C90.0432 (10)0.0340 (10)0.0603 (13)0.0046 (8)0.0180 (10)0.0009 (9)
C100.0424 (10)0.0351 (10)0.0391 (10)0.0012 (8)0.0099 (8)0.0011 (8)
C110.0497 (11)0.0347 (10)0.0428 (11)0.0011 (8)0.0116 (9)0.0033 (8)
C120.0494 (11)0.0418 (11)0.0411 (11)0.0067 (9)0.0134 (9)0.0026 (8)
C130.0489 (11)0.0459 (11)0.0617 (14)0.0041 (9)0.0229 (10)0.0005 (10)
C140.0546 (12)0.0343 (10)0.0639 (14)0.0115 (9)0.0232 (10)0.0042 (9)
C150.0673 (14)0.0570 (13)0.0660 (15)0.0108 (11)0.0271 (12)0.0035 (11)
N10.0511 (9)0.0319 (8)0.0509 (10)0.0001 (7)0.0205 (8)0.0015 (7)
N20.0480 (9)0.0461 (10)0.0690 (12)0.0067 (7)0.0235 (9)0.0115 (8)
O10.0656 (9)0.0387 (8)0.0813 (11)0.0062 (7)0.0416 (8)0.0081 (7)
O20.0612 (9)0.0488 (9)0.0902 (12)0.0131 (7)0.0384 (8)0.0210 (8)
Geometric parameters (Å, º) top
C1—C21.374 (3)C9—O11.254 (2)
C1—C61.377 (3)C10—N21.330 (2)
C1—C81.507 (3)C10—N11.344 (2)
C2—C31.380 (3)C10—C111.400 (3)
C2—H20.9300C11—C121.363 (2)
C3—C41.366 (3)C11—H110.9300
C3—C71.507 (3)C12—C131.405 (3)
C4—C51.381 (4)C12—C151.498 (3)
C4—H40.9300C13—C141.346 (3)
C5—C61.376 (3)C13—H130.9300
C5—H50.9300C14—N11.350 (2)
C6—H60.9300C14—H140.9300
C7—H7A0.9600C15—H15A0.9600
C7—H7B0.9600C15—H15B0.9600
C7—H7C0.9600C15—H15C0.9600
C8—C91.507 (3)N1—H10.877 (9)
C8—H8A0.9700N2—H2A0.8600
C8—H8B0.9700N2—H2B0.8600
C9—O21.236 (2)
C2—C1—C6118.3 (2)O2—C9—O1124.30 (18)
C2—C1—C8120.02 (19)O2—C9—C8119.97 (17)
C6—C1—C8121.54 (19)O1—C9—C8115.70 (16)
C1—C2—C3122.6 (2)N2—C10—N1118.07 (17)
C1—C2—H2118.7N2—C10—C11123.63 (17)
C3—C2—H2118.7N1—C10—C11118.30 (16)
C4—C3—C2118.0 (2)C12—C11—C10120.93 (17)
C4—C3—C7121.4 (2)C12—C11—H11119.5
C2—C3—C7120.6 (2)C10—C11—H11119.5
C3—C4—C5120.9 (2)C11—C12—C13118.45 (18)
C3—C4—H4119.6C11—C12—C15121.33 (18)
C5—C4—H4119.6C13—C12—C15120.22 (18)
C6—C5—C4120.0 (2)C14—C13—C12119.53 (18)
C6—C5—H5120.0C14—C13—H13120.2
C4—C5—H5120.0C12—C13—H13120.2
C5—C6—C1120.2 (2)C13—C14—N1121.13 (18)
C5—C6—H6119.9C13—C14—H14119.4
C1—C6—H6119.9N1—C14—H14119.4
C3—C7—H7A109.5C12—C15—H15A109.5
C3—C7—H7B109.5C12—C15—H15B109.5
H7A—C7—H7B109.5H15A—C15—H15B109.5
C3—C7—H7C109.5C12—C15—H15C109.5
H7A—C7—H7C109.5H15A—C15—H15C109.5
H7B—C7—H7C109.5H15B—C15—H15C109.5
C9—C8—C1117.78 (17)C10—N1—C14121.64 (17)
C9—C8—H8A107.9C10—N1—H1119.1 (14)
C1—C8—H8A107.9C14—N1—H1119.2 (13)
C9—C8—H8B107.9C10—N2—H2A120.0
C1—C8—H8B107.9C10—N2—H2B120.0
H8A—C8—H8B107.2H2A—N2—H2B120.0
C6—C1—C2—C31.4 (3)C1—C8—C9—O218.8 (3)
C8—C1—C2—C3174.70 (19)C1—C8—C9—O1162.85 (19)
C1—C2—C3—C40.3 (3)N2—C10—C11—C12179.30 (18)
C1—C2—C3—C7178.7 (2)N1—C10—C11—C121.0 (3)
C2—C3—C4—C50.9 (3)C10—C11—C12—C130.0 (3)
C7—C3—C4—C5179.9 (2)C10—C11—C12—C15179.46 (18)
C3—C4—C5—C60.9 (4)C11—C12—C13—C140.8 (3)
C4—C5—C6—C10.2 (4)C15—C12—C13—C14179.8 (2)
C2—C1—C6—C51.4 (3)C12—C13—C14—N10.5 (3)
C8—C1—C6—C5174.7 (2)N2—C10—N1—C14178.95 (18)
C2—C1—C8—C9121.8 (2)C11—C10—N1—C141.3 (3)
C6—C1—C8—C962.2 (3)C13—C14—N1—C100.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.88 (2)1.75 (2)2.627 (2)172 (2)
N2—H2A···O20.862.012.845 (2)163
N2—H2B···O2i0.862.102.829 (2)142
C14—H14···O1ii0.932.433.347 (2)168
C11—H11···Cg1i0.932.813.706 (2)161
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDivya Bharathi, M., Ahila, G., Mohana, J., Chakkaravarthi, G. & Anbalagan, G. (2015). Acta Cryst. E71, o261–o262.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, T. & Hu, Y. (2002). Bioorg. Med. Chem. Lett. 12, 2411–2413.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLuo, Y. & Hu, Y. (2006). Arch. Pharm. Chem. Life Sci. 339, 262–266.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160747.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds