organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-(6-nitro-2H-indazol-2-yl)acetate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: f_rejouani@yahoo.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 29 June 2016; accepted 2 July 2016; online 7 July 2016)

In the title compound, C11H11N3O4, the indazolyl ring and the nitro group are nearly coplanar, with the greatest deviation from their mean plane being 0.103 (2) Å. The mean plane through the acetate group is almost perpendicular to the indazolyl ring, subtending a dihedral angle of 88.05 (7)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N non-classical hydrogen bonds to form supra­molecular layers that stack along the a axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indazolyl derivatives have been used widely in medicinal chemistry (Gaikwad et al., 2015[Gaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). Eur. J. Med. Chem. 90, 707-731.]) and drug discovery (Jennings & Tennant et al., 2007[Jennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829-1838.]). They exhibit a broad range of biological activities including HIV protease inhibition (Han et al., 1998[Han, W., Pelletier, J. C. & Hodge, C. N. (1998). Bioorg. Med. Chem. Lett. 8, 3615-3620.]), anti-inflammatory (Rosati et al., 2007[Rosati, O., Curini, M., Marcotullio, M. C., Macchiarulo, A., Perfumi, M., Mattioli, L., Rismondo, F. & Cravotto, G. (2007). Bioorg. Med. Chem. 15, 3463-3473.]) anti-microbial (Li et al., 2003[Li, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663-5673.]), anti­spermatogenic (Takahashi et al., 2011[Takahashi, H., Shinoyama, M., Komine, T., Nagao, M., Suzuki, M., Tsuchida, H. & Katsuyama, K. (2011). Bioorg. Med. Chem. Lett. 21, 1758-1762.]) anti­platelet (Lee et al., 2001[Lee, F. Y., Lien, J. C., Huang, L. J., Huang, T. M., Tsai, S. C., Teng, C. M., Wu, C. C., Cheng, F. C. & Kuo, S. C. (2001). J. Med. Chem. 44, 3746-3749.]) and anti­cancer activities (Abbassi et al., 2012[Abbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2014[Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423-431.]).

The mol­ecule of the title compound is built up from an indazolyl ring (C1–C7/N2/N3) linked to a nitro group and to an ethyl acetate groups as shown in Fig. 1[link]. The nitro group and indazolyl cycle are nearly coplanar with the greatest deviation from the mean plane being 0.103 (2) Å for the O1 atom. The mean plan through the acetate moieties is almost perpendicular to the indazolyl ring as indicated by the dihedral angle of 88.05 (7)° between them.

[Figure 1]
Figure 1
Plot of the mol­ecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

The crystal structure cohesion is ensured by C—H⋯O and C—H⋯N hydrogen inter­actions (Table 1[link]), which form supramolecular layers that stack along the a axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.93 2.54 3.2743 (18) 137
C8—H8A⋯N2ii 0.97 2.59 3.4650 (19) 149
C8—H8B⋯O3iii 0.97 2.34 3.2525 (18) 157
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) x, y-1, z.

Synthesis and crystallization

To a solution of 6-nitro­indazole (6.13 mmol) in THF (30 ml) was added K2CO3 (9.2 mmol). After 15 min at 298 K, ethyl bromo­acetate (6.13 mmol) was added dropwise. The solution was refluxed with stirring for 6 h and the resulting mixture was evaporated. The crude material was dissolved with EtOAc (50 ml), washed with water and brine, dried over MgSO4 and the solvent evaporated in vacuo. The resulting residue was purified by column chromatography (EtOAc/ hexane 3/7). The title compound was recrystallized from ethanol at room temperature giving colourless crystals (m.p. 338 K, yield 65%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H11N3O4
Mr 249.23
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 31.808 (3), 4.6312 (4), 19.0381 (16)
β (°) 122.839 (3)
V3) 2356.3 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.35 × 0.31 × 0.25
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.])
Tmin, Tmax 0.626, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25389, 3324, 2517
Rint 0.030
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.140, 1.03
No. of reflections 3324
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Ethyl 2-(6-nitro-2H-indazol-2-yl)acetate top
Crystal data top
C11H11N3O4Dx = 1.405 Mg m3
Mr = 249.23Melting point: 338 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 31.808 (3) ÅCell parameters from 3324 reflections
b = 4.6312 (4) Åθ = 2.1–29.6°
c = 19.0381 (16) ŵ = 0.11 mm1
β = 122.839 (3)°T = 296 K
V = 2356.3 (3) Å3Block, colourless
Z = 80.35 × 0.31 × 0.25 mm
F(000) = 1040
Data collection top
Bruker X8 APEX
diffractometer
3324 independent reflections
Radiation source: fine-focus sealed tube2517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 29.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2015b)
h = 4444
Tmin = 0.626, Tmax = 0.746k = 66
25389 measured reflectionsl = 2426
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.8343P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3324 reflectionsΔρmax = 0.20 e Å3
163 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33711 (5)0.4119 (3)0.46597 (8)0.0418 (3)
C20.37402 (5)0.6087 (3)0.52132 (8)0.0466 (3)
H20.37230.70290.56280.056*
C30.41254 (5)0.6530 (3)0.51054 (8)0.0472 (3)
C40.41682 (5)0.5172 (4)0.44835 (10)0.0570 (4)
H40.44430.55530.44470.068*
C50.38093 (6)0.3310 (4)0.39402 (10)0.0580 (4)
H50.38310.24270.35220.070*
C60.34001 (5)0.2737 (3)0.40226 (8)0.0454 (3)
C70.29814 (5)0.0965 (3)0.36243 (9)0.0508 (3)
H70.28840.02440.31710.061*
C80.22800 (5)0.0023 (3)0.38266 (9)0.0516 (3)
H8A0.22820.01980.43350.062*
H8B0.22520.18830.35940.062*
C90.18351 (5)0.1819 (3)0.32093 (8)0.0432 (3)
C100.09600 (6)0.2351 (4)0.25660 (11)0.0614 (4)
H10A0.09550.40890.28450.074*
H10B0.09400.29080.20580.074*
C110.05359 (6)0.0510 (5)0.23640 (13)0.0792 (6)
H11A0.02300.15400.20050.119*
H11B0.05420.11990.20840.119*
H11C0.05570.00220.28700.119*
N10.45222 (5)0.8546 (3)0.56789 (8)0.0608 (3)
N20.29646 (4)0.3270 (3)0.46565 (7)0.0482 (3)
N30.27453 (4)0.1349 (2)0.40251 (7)0.0467 (3)
O10.48852 (5)0.8813 (4)0.56230 (9)0.0909 (5)
O20.44763 (5)0.9839 (4)0.61888 (9)0.0884 (4)
O30.18539 (4)0.3901 (2)0.28551 (7)0.0644 (3)
O40.14227 (3)0.0744 (2)0.31126 (6)0.0532 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (6)0.0444 (6)0.0440 (6)0.0005 (5)0.0229 (5)0.0021 (5)
C20.0426 (6)0.0519 (7)0.0444 (6)0.0045 (5)0.0231 (5)0.0024 (5)
C30.0372 (6)0.0517 (7)0.0465 (6)0.0025 (5)0.0186 (5)0.0082 (5)
C40.0456 (7)0.0720 (9)0.0616 (8)0.0004 (7)0.0345 (7)0.0075 (7)
C50.0575 (8)0.0695 (9)0.0609 (8)0.0013 (7)0.0411 (7)0.0033 (7)
C60.0449 (7)0.0453 (6)0.0479 (7)0.0034 (5)0.0263 (6)0.0013 (5)
C70.0528 (7)0.0472 (7)0.0520 (7)0.0009 (6)0.0282 (6)0.0068 (6)
C80.0432 (7)0.0446 (7)0.0594 (8)0.0074 (5)0.0229 (6)0.0013 (6)
C90.0454 (7)0.0394 (6)0.0433 (6)0.0058 (5)0.0230 (5)0.0063 (5)
C100.0529 (8)0.0542 (8)0.0715 (10)0.0136 (7)0.0301 (7)0.0105 (7)
C110.0435 (8)0.0896 (13)0.0937 (13)0.0143 (8)0.0302 (9)0.0275 (11)
N10.0453 (7)0.0706 (8)0.0555 (7)0.0128 (6)0.0202 (6)0.0064 (6)
N20.0430 (6)0.0540 (6)0.0507 (6)0.0083 (5)0.0275 (5)0.0079 (5)
N30.0413 (5)0.0433 (5)0.0522 (6)0.0040 (4)0.0231 (5)0.0022 (5)
O10.0569 (7)0.1261 (12)0.0900 (9)0.0356 (7)0.0402 (7)0.0075 (8)
O20.0756 (8)0.1017 (10)0.0873 (9)0.0404 (8)0.0438 (7)0.0381 (8)
O30.0602 (6)0.0561 (6)0.0687 (7)0.0068 (5)0.0296 (6)0.0132 (5)
O40.0417 (5)0.0527 (5)0.0620 (6)0.0017 (4)0.0260 (5)0.0095 (4)
Geometric parameters (Å, º) top
C1—N21.3485 (15)C8—C91.5073 (19)
C1—C21.4062 (18)C8—H8A0.9700
C1—C61.4182 (17)C8—H8B0.9700
C2—C31.3631 (17)C9—O31.1964 (16)
C2—H20.9300C9—O41.3195 (15)
C3—C41.411 (2)C10—C111.460 (2)
C3—N11.4703 (18)C10—O41.4634 (17)
C4—C51.355 (2)C10—H10A0.9700
C4—H40.9300C10—H10B0.9700
C5—C61.4177 (18)C11—H11A0.9600
C5—H50.9300C11—H11B0.9600
C6—C71.3881 (18)C11—H11C0.9600
C7—N31.3411 (17)N1—O21.2150 (19)
C7—H70.9300N1—O11.2218 (17)
C8—N31.4504 (16)N2—N31.3468 (16)
N2—C1—C2126.96 (11)C9—C8—H8B109.4
N2—C1—C6111.80 (11)H8A—C8—H8B108.0
C2—C1—C6121.23 (11)O3—C9—O4125.13 (13)
C3—C2—C1115.98 (12)O3—C9—C8124.84 (12)
C3—C2—H2122.0O4—C9—C8110.03 (11)
C1—C2—H2122.0C11—C10—O4108.64 (13)
C2—C3—C4124.25 (13)C11—C10—H10A110.0
C2—C3—N1117.61 (13)O4—C10—H10A110.0
C4—C3—N1118.14 (12)C11—C10—H10B110.0
C5—C4—C3119.96 (12)O4—C10—H10B110.0
C5—C4—H4120.0H10A—C10—H10B108.3
C3—C4—H4120.0C10—C11—H11A109.5
C4—C5—C6118.62 (13)C10—C11—H11B109.5
C4—C5—H5120.7H11A—C11—H11B109.5
C6—C5—H5120.7C10—C11—H11C109.5
C7—C6—C5135.79 (13)H11A—C11—H11C109.5
C7—C6—C1104.23 (11)H11B—C11—H11C109.5
C5—C6—C1119.96 (12)O2—N1—O1123.26 (14)
N3—C7—C6106.16 (12)O2—N1—C3118.66 (12)
N3—C7—H7126.9O1—N1—C3118.08 (15)
C6—C7—H7126.9N3—N2—C1103.17 (10)
N3—C8—C9111.32 (11)C7—N3—N2114.63 (11)
N3—C8—H8A109.4C7—N3—C8127.07 (12)
C9—C8—H8A109.4N2—N3—C8118.25 (11)
N3—C8—H8B109.4C9—O4—C10116.59 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.543.2743 (18)137
C8—H8A···N2ii0.972.593.4650 (19)149
C8—H8B···O3iii0.972.343.2525 (18)157
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x, y1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for the financial support.

References

First citationAbbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). Eur. J. Med. Chem. 90, 707–731.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHan, W., Pelletier, J. C. & Hodge, C. N. (1998). Bioorg. Med. Chem. Lett. 8, 3615–3620.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829–1838.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, F. Y., Lien, J. C., Huang, L. J., Huang, T. M., Tsai, S. C., Teng, C. M., Wu, C. C., Cheng, F. C. & Kuo, S. C. (2001). J. Med. Chem. 44, 3746–3749.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663–5673.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRosati, O., Curini, M., Marcotullio, M. C., Macchiarulo, A., Perfumi, M., Mattioli, L., Rismondo, F. & Cravotto, G. (2007). Bioorg. Med. Chem. 15, 3463–3473.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakahashi, H., Shinoyama, M., Komine, T., Nagao, M., Suzuki, M., Tsuchida, H. & Katsuyama, K. (2011). Bioorg. Med. Chem. Lett. 21, 1758–1762.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds