organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-{[(2-Meth­­oxy­naphthalen-1-yl)meth­yl]amino}­phenol

CROSSMARK_Color_square_no_text.svg

aLaboratory for Synthesis of Molecules of Biological Interest, University of Constantine 1, 25000 Constantine, Algeria, and bResearch Unit of Chemistry of the Environment and Molecular Structure, Department of Chemistry, University of Constantine 1, Algeria
*Correspondence e-mail: gnd1sr811@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 July 2016; accepted 16 July 2016; online 26 July 2016)

The asymmetric unit of the title compound, C18H17NO2, contains two independent mol­ecules (A and B). The dihedral angle between the naphthalene ring system and the benzene ring is 74.67 (10)° in mol­ecule A and 78.81 (9)° in mol­ecule B. In the crystal, mol­ecules are linked by a series of C—H⋯π inter­actions, forming sheets parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aromatic amines and amino­phenols, are of considerable importance for their industrial, toxicological and pharmaceutical aspects (Kirk-Othmer, 1979[Kirk-Othmer (1979). Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed, pp. 309-354. New York: John Wiley.]). In view of this inter­est we have synthesized the title amino-phenol derivative, which was obtained by reduction of the initially prepared Schiff base, and report herein on its crystal structure.

The title compound, Fig. 1[link], crystallized with two independent mol­ecules (A and B) in the asymmetric unit. The naphthalene ring system and the benzene ring are inclined to one another by 74.67 (10)° in mol­ecule A and 78.81 (9)° in mol­ecule B. The bridging C—N bond lengths are single bonds as confirmed by their bond lengths; C7—N1 = 1.464 (2) Å in mol­ecule A, and C25—N2 = 1.462 (2) Å in mol­ecule B.

[Figure 1]
Figure 1
View of the mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by a series of C—H⋯π inter­actions (Table 1[link]) forming sheets lying parallel to (001); see Fig. 2[link]. There are no other significant inter­molecular inter­actions present.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, Cg5 and Cg7 are the centroids of rings C1–C6, C8–C11/C16/C17, C12–C17, C19–C24 and C30–C35, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg5i 0.93 2.93 3.826 (3) 162
C18—H18ACg3ii 0.96 2.81 3.637 (3) 144
C21—H21⋯Cg1iii 0.93 2.99 3.890 (3) 165
C24—H24⋯Cg2 0.93 2.97 3.753 (2) 143
C36—H36BCg7iv 0.96 2.98 3.814 (3) 146
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z.
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The C—H⋯π inter­actions are illustrated by dashed lines, and for clarity only the H atoms involved (grey balls) have been included (see Table 1[link] for details).

Synthesis and crystallization

A mixture of 2-amino­phenol (3 mmol) and 2-meth­oxy-1-naphthaldehyde (3 mmol) in methanol (10 mmol) was stirred at room temperature for 24 h. On completion of this condensation reaction (monitored by thin layer chromatography), NaBH3CN (4.5 mmol) was added and stirring was continued for 24 h. On completion of the reaction (monitored by thin layer chromatography), the mixture was poured over ice–water. The resulting precipitate was filtered, washed with water and dried. The resulting light-brown fine powder of the title compound was obtained in very high purity with excellent yield.

Spectroscopic data: IR (KBr,cm−1) ν: 3476; 3418; 1601; 1258. 1HNMR (400 MHz, CDCl3) δ 8.04 (d, J = 8.6 Hz, 1H); 7.88 (d, J = 9.1 Hz, 1H); 7.84 (d,J = 8.6 Hz, 1H); 7.51 (t, J = 7.7 Hz, 1H); 7.39 (t, J = 7.5 Hz, 1H); 7.34 (d, J = 9.1 Hz, 1H); 7.04 (d, J = 7.9 Hz, 1H); 6.96 (t, J = 7.5 Hz, 1H); 6.81–6.72 (m, 2H); 4.71 (s, 2H); 3.99 (s, 2H). 13CNMR (101 MHz, CDCl3) δ 155.26; 145.11; 137.23; 133.28; 129.71; 129.20; 128.49; 127.04; 123.59; 123.11; 121.42;119.48; 119.00;114.45;114.33; 113.32; 56.72; 39.49. HRMS: (M +.Na)+, found 302.1180,C18H17NO2Na requires 302.1157.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Three reflections (031, 002, 013), affected by the backstop were omitted from the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C18H16NO2
Mr 278.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.1402 (5), 19.3384 (14), 22.0655 (17)
β (°) 96.874 (4)
V3) 3024.9 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 19509, 5337, 3608
Rint 0.030
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.167, 1.02
No. of reflections 5337
No. of parameters 390
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

2-{[(2-Methoxynaphthalen-1-yl)methyl]amino}phenol top
Crystal data top
C18H16NO2F(000) = 1176
Mr = 278.32Dx = 1.222 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1402 (5) ÅCell parameters from 8065 reflections
b = 19.3384 (14) Åθ = 3.1–25.5°
c = 22.0655 (17) ŵ = 0.08 mm1
β = 96.874 (4)°T = 293 K
V = 3024.9 (4) Å3Block, orange
Z = 80.03 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
3608 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.030
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
Detector resolution: 18.4 pixels mm-1h = 58
φ and ω scansk = 2221
19509 measured reflectionsl = 2626
5337 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0903P)2 + 0.6386P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5337 reflectionsΔρmax = 0.33 e Å3
390 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1871 (3)0.57240 (10)0.20335 (8)0.0911 (6)
O20.0327 (2)0.36826 (8)0.29552 (7)0.0677 (5)
N10.0977 (2)0.48913 (8)0.21416 (8)0.0485 (4)
H340.036 (3)0.5017 (11)0.2456 (11)0.065 (7)*
C10.0168 (3)0.48804 (10)0.15803 (9)0.0479 (5)
C20.1693 (3)0.53455 (13)0.15179 (10)0.0626 (6)
C30.2816 (4)0.54052 (17)0.09782 (13)0.0850 (8)
H30.38180.57160.09390.102*
C40.2460 (4)0.50012 (19)0.04878 (13)0.0938 (10)
H40.32290.50410.01180.113*
C50.0975 (4)0.45394 (16)0.05404 (11)0.0854 (8)
H50.07510.42690.02080.103*
C60.0185 (3)0.44792 (12)0.10900 (10)0.0628 (6)
H60.11910.41710.11270.075*
C70.2195 (3)0.43007 (10)0.23271 (9)0.0497 (5)
H7A0.33840.43500.21600.060*
H7B0.15970.38780.21660.060*
C80.2561 (3)0.42537 (9)0.30118 (9)0.0460 (5)
C90.1217 (3)0.39253 (10)0.33156 (9)0.0510 (5)
C100.1471 (3)0.38502 (11)0.39523 (10)0.0610 (6)
H100.05490.36350.41490.073*
C110.3070 (3)0.40930 (12)0.42812 (10)0.0633 (6)
H110.32420.40290.47020.076*
C120.6122 (3)0.47032 (13)0.43392 (11)0.0691 (7)
H120.63220.46290.47580.083*
C130.7428 (4)0.50649 (14)0.40637 (13)0.0779 (7)
H130.85010.52390.42940.094*
C140.7139 (3)0.51724 (13)0.34319 (12)0.0718 (7)
H140.80170.54250.32450.086*
C150.5591 (3)0.49120 (11)0.30879 (10)0.0576 (6)
H150.54410.49840.26680.069*
C160.4474 (3)0.44400 (10)0.39997 (9)0.0538 (5)
C170.4198 (3)0.45330 (10)0.33556 (9)0.0469 (5)
C180.1706 (4)0.32928 (14)0.32310 (13)0.0824 (8)
H18A0.22160.35730.35310.124*
H18B0.11240.28890.34230.124*
H18C0.27020.31560.29230.124*
O30.6832 (3)0.10351 (9)0.29302 (7)0.0796 (5)
O40.5217 (2)0.30583 (9)0.17915 (8)0.0802 (5)
N20.4025 (2)0.18845 (8)0.27327 (8)0.0505 (4)
H350.465 (3)0.1718 (11)0.2442 (10)0.061 (7)*
C190.5112 (3)0.19270 (9)0.33008 (8)0.0434 (4)
C200.6598 (3)0.14551 (10)0.34137 (9)0.0519 (5)
C210.7683 (3)0.14390 (12)0.39699 (10)0.0660 (6)
H210.86730.11260.40410.079*
C220.7296 (4)0.18927 (13)0.44263 (10)0.0733 (7)
H220.80240.18810.48050.088*
C230.5849 (4)0.23555 (13)0.43210 (10)0.0711 (7)
H230.56030.26610.46270.085*
C240.4743 (3)0.23732 (11)0.37598 (9)0.0562 (5)
H240.37510.26860.36930.067*
C250.2839 (3)0.24647 (10)0.24990 (9)0.0499 (5)
H25A0.34710.28960.26180.060*
H25B0.16590.24530.26760.060*
C260.2444 (3)0.24313 (10)0.18170 (9)0.0482 (5)
C270.3695 (3)0.27438 (12)0.14705 (10)0.0592 (6)
C280.3399 (4)0.27346 (14)0.08317 (11)0.0731 (7)
H280.42410.29580.06070.088*
C290.1871 (4)0.23974 (15)0.05396 (11)0.0753 (7)
H290.16900.23900.01150.090*
C300.1031 (4)0.17011 (15)0.05697 (11)0.0787 (8)
H300.12220.16870.01450.094*
C310.2272 (4)0.13796 (15)0.08931 (13)0.0841 (8)
H310.33110.11510.06910.101*
C320.1988 (3)0.13913 (14)0.15317 (12)0.0732 (7)
H320.28380.11660.17520.088*
C330.0489 (3)0.17276 (11)0.18333 (10)0.0575 (6)
H330.03310.17290.22580.069*
C340.0559 (3)0.20595 (12)0.08671 (9)0.0592 (6)
C350.0839 (3)0.20765 (10)0.15160 (9)0.0484 (5)
C360.6600 (4)0.33821 (17)0.14691 (15)0.1022 (10)
H36A0.60160.37420.12130.153*
H36B0.71380.30450.12210.153*
H36C0.75750.35770.17560.153*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1044 (14)0.0957 (14)0.0720 (12)0.0467 (11)0.0064 (10)0.0047 (10)
O20.0568 (9)0.0696 (10)0.0770 (11)0.0108 (8)0.0097 (8)0.0033 (8)
N10.0571 (10)0.0414 (9)0.0465 (10)0.0043 (8)0.0043 (8)0.0019 (7)
C10.0505 (11)0.0438 (11)0.0491 (11)0.0077 (9)0.0041 (9)0.0028 (9)
C20.0565 (13)0.0701 (15)0.0598 (14)0.0024 (11)0.0013 (11)0.0110 (11)
C30.0667 (16)0.111 (2)0.0745 (18)0.0090 (15)0.0030 (14)0.0142 (16)
C40.0795 (19)0.127 (3)0.0678 (18)0.0158 (19)0.0209 (15)0.0121 (17)
C50.099 (2)0.099 (2)0.0555 (15)0.0185 (18)0.0002 (14)0.0131 (14)
C60.0702 (14)0.0609 (14)0.0567 (13)0.0064 (11)0.0053 (11)0.0063 (11)
C70.0540 (12)0.0430 (11)0.0527 (12)0.0063 (9)0.0089 (9)0.0002 (9)
C80.0494 (11)0.0389 (10)0.0507 (11)0.0081 (9)0.0095 (9)0.0021 (8)
C90.0507 (12)0.0441 (11)0.0591 (13)0.0049 (9)0.0111 (10)0.0012 (9)
C100.0671 (15)0.0565 (13)0.0635 (14)0.0050 (11)0.0246 (12)0.0077 (11)
C110.0817 (16)0.0606 (14)0.0493 (12)0.0118 (12)0.0153 (12)0.0035 (10)
C120.0743 (16)0.0722 (16)0.0583 (14)0.0082 (13)0.0020 (12)0.0083 (12)
C130.0675 (16)0.0799 (18)0.0830 (19)0.0028 (14)0.0052 (14)0.0174 (14)
C140.0628 (15)0.0678 (16)0.0856 (18)0.0075 (12)0.0126 (13)0.0021 (13)
C150.0577 (13)0.0556 (13)0.0599 (13)0.0023 (10)0.0086 (10)0.0036 (10)
C160.0616 (13)0.0477 (12)0.0522 (12)0.0085 (10)0.0070 (10)0.0027 (9)
C170.0508 (11)0.0391 (10)0.0512 (12)0.0092 (9)0.0081 (9)0.0002 (8)
C180.0679 (16)0.0728 (17)0.109 (2)0.0173 (13)0.0211 (15)0.0093 (15)
O30.1055 (13)0.0722 (11)0.0563 (9)0.0390 (10)0.0105 (9)0.0142 (8)
O40.0653 (10)0.0875 (12)0.0884 (12)0.0206 (9)0.0123 (9)0.0064 (10)
N20.0565 (10)0.0452 (10)0.0478 (10)0.0052 (8)0.0023 (8)0.0056 (8)
C190.0473 (11)0.0378 (10)0.0445 (10)0.0024 (8)0.0031 (8)0.0008 (8)
C200.0644 (13)0.0432 (11)0.0467 (11)0.0040 (10)0.0008 (10)0.0004 (9)
C210.0757 (15)0.0593 (14)0.0594 (14)0.0150 (12)0.0068 (12)0.0027 (11)
C220.0942 (18)0.0718 (16)0.0484 (13)0.0101 (14)0.0144 (12)0.0019 (12)
C230.0920 (18)0.0707 (16)0.0488 (13)0.0123 (14)0.0014 (12)0.0127 (11)
C240.0600 (13)0.0543 (13)0.0537 (12)0.0075 (10)0.0044 (10)0.0056 (10)
C250.0513 (11)0.0456 (11)0.0511 (12)0.0075 (9)0.0010 (9)0.0047 (9)
C260.0499 (11)0.0429 (11)0.0512 (11)0.0081 (9)0.0038 (9)0.0007 (9)
C270.0569 (13)0.0569 (13)0.0644 (14)0.0042 (11)0.0096 (11)0.0017 (11)
C280.0769 (17)0.0784 (17)0.0675 (16)0.0005 (14)0.0235 (13)0.0088 (13)
C290.0848 (18)0.0942 (19)0.0476 (13)0.0106 (15)0.0113 (13)0.0050 (12)
C300.0834 (18)0.096 (2)0.0524 (14)0.0044 (15)0.0083 (13)0.0116 (13)
C310.0751 (17)0.093 (2)0.0795 (18)0.0124 (15)0.0106 (15)0.0173 (15)
C320.0689 (15)0.0786 (17)0.0711 (16)0.0131 (13)0.0044 (13)0.0021 (13)
C330.0617 (13)0.0588 (13)0.0506 (12)0.0016 (11)0.0007 (10)0.0011 (10)
C340.0645 (14)0.0640 (14)0.0478 (12)0.0099 (11)0.0011 (10)0.0017 (10)
C350.0517 (11)0.0459 (11)0.0464 (11)0.0102 (9)0.0003 (9)0.0002 (9)
C360.0808 (19)0.102 (2)0.127 (3)0.0285 (17)0.0257 (18)0.0137 (19)
Geometric parameters (Å, º) top
O1—C21.371 (3)O3—C201.367 (2)
O2—C91.363 (3)O4—C271.367 (3)
O2—C181.432 (3)O4—C361.429 (3)
N1—C11.400 (3)N2—C191.395 (2)
N1—C71.464 (2)N2—C251.462 (2)
N1—H340.90 (2)N2—H350.88 (2)
C1—C61.379 (3)C19—C241.380 (3)
C1—C21.407 (3)C19—C201.399 (3)
C2—C31.359 (3)C20—C211.371 (3)
C3—C41.383 (4)C21—C221.388 (3)
C3—H30.9300C21—H210.9300
C4—C51.381 (4)C22—C231.366 (3)
C4—H40.9300C22—H220.9300
C5—C61.389 (3)C23—C241.387 (3)
C5—H50.9300C23—H230.9300
C6—H60.9300C24—H240.9300
C7—C81.505 (3)C25—C261.499 (3)
C7—H7A0.9700C25—H25A0.9700
C7—H7B0.9700C25—H25B0.9700
C8—C91.388 (3)C26—C271.383 (3)
C8—C171.422 (3)C26—C351.429 (3)
C9—C101.402 (3)C27—C281.400 (3)
C10—C111.361 (3)C28—C291.365 (4)
C10—H100.9300C28—H280.9300
C11—C161.411 (3)C29—C341.410 (3)
C11—H110.9300C29—H290.9300
C12—C131.365 (4)C30—C311.354 (4)
C12—C161.412 (3)C30—C341.422 (3)
C12—H120.9300C30—H300.9300
C13—C141.400 (4)C31—C321.400 (4)
C13—H130.9300C31—H310.9300
C14—C151.360 (3)C32—C331.357 (3)
C14—H140.9300C32—H320.9300
C15—C171.420 (3)C33—C351.415 (3)
C15—H150.9300C33—H330.9300
C16—C171.423 (3)C34—C351.422 (3)
C18—H18A0.9600C36—H36A0.9600
C18—H18B0.9600C36—H36B0.9600
C18—H18C0.9600C36—H36C0.9600
C9—O2—C18118.85 (18)C27—O4—C36119.4 (2)
C1—N1—C7120.01 (16)C19—N2—C25120.54 (16)
C1—N1—H34113.4 (14)C19—N2—H35113.6 (14)
C7—N1—H34109.0 (14)C25—N2—H35110.1 (14)
C6—C1—N1124.09 (19)C24—C19—N2124.18 (18)
C6—C1—C2119.7 (2)C24—C19—C20118.99 (18)
N1—C1—C2116.13 (18)N2—C19—C20116.73 (17)
C3—C2—O1125.3 (2)O3—C20—C21125.2 (2)
C3—C2—C1120.6 (2)O3—C20—C19114.18 (17)
O1—C2—C1114.05 (19)C21—C20—C19120.63 (19)
C2—C3—C4119.6 (3)C20—C21—C22119.7 (2)
C2—C3—H3120.2C20—C21—H21120.2
C4—C3—H3120.2C22—C21—H21120.2
C5—C4—C3120.7 (3)C23—C22—C21120.2 (2)
C5—C4—H4119.6C23—C22—H22119.9
C3—C4—H4119.6C21—C22—H22119.9
C4—C5—C6119.9 (3)C22—C23—C24120.4 (2)
C4—C5—H5120.0C22—C23—H23119.8
C6—C5—H5120.0C24—C23—H23119.8
C1—C6—C5119.5 (2)C19—C24—C23120.1 (2)
C1—C6—H6120.3C19—C24—H24119.9
C5—C6—H6120.3C23—C24—H24119.9
N1—C7—C8110.71 (15)N2—C25—C26110.65 (16)
N1—C7—H7A109.5N2—C25—H25A109.5
C8—C7—H7A109.5C26—C25—H25A109.5
N1—C7—H7B109.5N2—C25—H25B109.5
C8—C7—H7B109.5C26—C25—H25B109.5
H7A—C7—H7B108.1H25A—C25—H25B108.1
C9—C8—C17119.19 (18)C27—C26—C35119.22 (19)
C9—C8—C7117.74 (18)C27—C26—C25118.67 (19)
C17—C8—C7123.07 (17)C35—C26—C25122.11 (18)
O2—C9—C8115.68 (18)O4—C27—C26115.7 (2)
O2—C9—C10123.19 (19)O4—C27—C28122.9 (2)
C8—C9—C10121.1 (2)C26—C27—C28121.4 (2)
C11—C10—C9119.9 (2)C29—C28—C27119.8 (2)
C11—C10—H10120.1C29—C28—H28120.1
C9—C10—H10120.1C27—C28—H28120.1
C10—C11—C16121.6 (2)C28—C29—C34121.5 (2)
C10—C11—H11119.2C28—C29—H29119.3
C16—C11—H11119.2C34—C29—H29119.3
C13—C12—C16121.2 (2)C31—C30—C34121.2 (2)
C13—C12—H12119.4C31—C30—H30119.4
C16—C12—H12119.4C34—C30—H30119.4
C12—C13—C14119.5 (2)C30—C31—C32119.9 (2)
C12—C13—H13120.2C30—C31—H31120.1
C14—C13—H13120.2C32—C31—H31120.1
C15—C14—C13120.9 (2)C33—C32—C31120.8 (2)
C15—C14—H14119.6C33—C32—H32119.6
C13—C14—H14119.6C31—C32—H32119.6
C14—C15—C17121.5 (2)C32—C33—C35121.4 (2)
C14—C15—H15119.3C32—C33—H33119.3
C17—C15—H15119.3C35—C33—H33119.3
C11—C16—C12121.9 (2)C29—C34—C35118.9 (2)
C11—C16—C17118.6 (2)C29—C34—C30122.1 (2)
C12—C16—C17119.4 (2)C35—C34—C30119.0 (2)
C15—C17—C8123.10 (18)C33—C35—C34117.73 (19)
C15—C17—C16117.43 (19)C33—C35—C26123.11 (18)
C8—C17—C16119.47 (18)C34—C35—C26119.15 (19)
O2—C18—H18A109.5O4—C36—H36A109.5
O2—C18—H18B109.5O4—C36—H36B109.5
H18A—C18—H18B109.5H36A—C36—H36B109.5
O2—C18—H18C109.5O4—C36—H36C109.5
H18A—C18—H18C109.5H36A—C36—H36C109.5
H18B—C18—H18C109.5H36B—C36—H36C109.5
C7—N1—C1—C623.4 (3)C25—N2—C19—C2422.2 (3)
C7—N1—C1—C2160.56 (18)C25—N2—C19—C20161.57 (18)
C6—C1—C2—C30.3 (3)C24—C19—C20—O3179.58 (19)
N1—C1—C2—C3175.9 (2)N2—C19—C20—O33.1 (3)
C6—C1—C2—O1178.7 (2)C24—C19—C20—C210.5 (3)
N1—C1—C2—O12.6 (3)N2—C19—C20—C21177.0 (2)
O1—C2—C3—C4178.6 (3)O3—C20—C21—C22179.8 (2)
C1—C2—C3—C40.4 (4)C19—C20—C21—C220.4 (4)
C2—C3—C4—C50.1 (4)C20—C21—C22—C230.4 (4)
C3—C4—C5—C60.3 (4)C21—C22—C23—C240.5 (4)
N1—C1—C6—C5175.9 (2)N2—C19—C24—C23176.8 (2)
C2—C1—C6—C50.1 (3)C20—C19—C24—C230.7 (3)
C4—C5—C6—C10.4 (4)C22—C23—C24—C190.7 (4)
C1—N1—C7—C8153.22 (18)C19—N2—C25—C26157.18 (18)
N1—C7—C8—C983.4 (2)N2—C25—C26—C2788.3 (2)
N1—C7—C8—C1796.1 (2)N2—C25—C26—C3590.5 (2)
C18—O2—C9—C8175.37 (19)C36—O4—C27—C26178.8 (2)
C18—O2—C9—C104.2 (3)C36—O4—C27—C281.3 (4)
C17—C8—C9—O2178.85 (16)C35—C26—C27—O4178.50 (17)
C7—C8—C9—O20.7 (3)C25—C26—C27—O40.3 (3)
C17—C8—C9—C101.6 (3)C35—C26—C27—C281.6 (3)
C7—C8—C9—C10178.88 (18)C25—C26—C27—C28179.6 (2)
O2—C9—C10—C11178.6 (2)O4—C27—C28—C29178.5 (2)
C8—C9—C10—C110.9 (3)C26—C27—C28—C291.6 (4)
C9—C10—C11—C161.9 (3)C27—C28—C29—C340.6 (4)
C16—C12—C13—C140.6 (4)C34—C30—C31—C320.6 (4)
C12—C13—C14—C151.1 (4)C30—C31—C32—C330.6 (4)
C13—C14—C15—C171.1 (4)C31—C32—C33—C350.1 (4)
C10—C11—C16—C12178.9 (2)C28—C29—C34—C350.4 (4)
C10—C11—C16—C170.2 (3)C28—C29—C34—C30179.5 (2)
C13—C12—C16—C11177.0 (2)C31—C30—C34—C29179.9 (3)
C13—C12—C16—C172.1 (3)C31—C30—C34—C350.1 (4)
C14—C15—C17—C8179.9 (2)C32—C33—C35—C340.4 (3)
C14—C15—C17—C160.5 (3)C32—C33—C35—C26179.5 (2)
C9—C8—C17—C15176.21 (18)C29—C34—C35—C33179.4 (2)
C7—C8—C17—C153.3 (3)C30—C34—C35—C330.4 (3)
C9—C8—C17—C163.2 (3)C29—C34—C35—C260.4 (3)
C7—C8—C17—C16177.29 (17)C30—C34—C35—C26179.5 (2)
C11—C16—C17—C15177.13 (18)C27—C26—C35—C33178.39 (19)
C12—C16—C17—C152.0 (3)C25—C26—C35—C330.4 (3)
C11—C16—C17—C82.3 (3)C27—C26—C35—C340.6 (3)
C12—C16—C17—C8178.50 (18)C25—C26—C35—C34179.40 (17)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg5 and Cg7 are the centroids of rings C1–C6, C8–C11/C16/C17, C12–C17, C19–C24 and C30–C35, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg5i0.932.933.826 (3)162
C18—H18A···Cg3ii0.962.813.637 (3)144
C21—H21···Cg1iii0.932.993.890 (3)165
C24—H24···Cg20.932.973.753 (2)143
C36—H36B···Cg7iv0.962.983.814 (3)146
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y, z.
 

Acknowledgements

We are grateful to the Ministry of the Higher Education and Scientific Research, and the Department of Chemistry, University of Constantine1, for support for this work.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKirk-Othmer (1979). Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed, pp. 309–354. New York: John Wiley.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds