organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-(4-cyano­phen­yl)-1-(4-fluoro­benz­yl)-1H-benzo[d]imidazole-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aPURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, bDepartment of Chemistry, Mangalore University, Mangaluru 574 199, India, cPG Department of Chemistry, SDM College (Autonomous), Ujire, Karnataka 574 240, India, dDepartment of Material Science, Mangalore University, Mangaluru 574 199, India, and eDepartment of Chemistry, Faculty of Science, An Najah National University, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: khalil.i@najah.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 July 2016; accepted 11 July 2016; online 15 July 2016)

The title benzimidazole derivative, C24H18FN3O2, is T-shaped, with the 4-cyano­benzene and 4-fluoro­benzyl rings inclined to the imidazole ring system by 32.89 (10) and 83.63 (10)°, respectively, and by 89.00 (12)° to one another. The terminal methyl group of the ethyl­carboxyl­ate group is disordered over three sites and was refined with a fixed occupancy ratio of 1/3:1/3:1/3. In the crystal, mol­ecules are essentially linked by offset ππ inter­actions, involving inversion-related imidazole rings [inter-centroid distance = 3.763 (1) Å], and stack along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Having an inter­est in the synthesis of benzimidazole derivatives, we present herein the synthesis and crystal structure of the title compound, Fig. 1[link]. The mol­ecule is T-shaped, with the 4-cyano­benzene ring (C1–C6) and the 4-fluoro­benzyl ring (C10–C15) inclined to imidazole ring system (N1/N2/C8/C16–C21) by 32.89 (10) and 83.63 (10)°, respectively, and by 89.00 (12)° to one another.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, Fig. 2[link], mol­ecules are essentially linked by offset ππ inter­actions, involving inversion-related imidazole ring systems, and stack along the b-axis direction [Cg1⋯Cg4i = 3.763 (1) Å, inter­planar distance = 3.556 (1) Å, slippage 1.277 Å, Cg1 and Cg4 are the centroids of rings N1/N2/C8/C16/C17 and C16–C21, respectively; symmetry code (i) −x + 1, −y + 1, −z + 1].

[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. For clarity, the H atoms and the minor component of the disordered methyl C atom have been omitted.

Synthesis and crystallization

Sodium di­thio­nite (3.0 equiv) was added to a stirred solution of ethyl 4-(4-fluoro­benzyl­amino)-3-nitro­benzoate (0.01 mol; 1.0 equiv) and 4-cyano­benzaldehyde (0.01 mol; 1.0 equiv) in DMSO (20 ml). The reaction mixture was stirred at 363 K for 3 h. After the completion of reaction (monitored by TLC hexa­ne:ethyl acetate (7:3, v/v)), it was poured onto crushed ice. The solid that separated was filtered off, washed with water and dried. The product was recrystallized from N,N-di­methyl­formamide giving crystals suitable for X-ray diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The terminal methyl group (C24A, C24B and C24C) of the ethylcarboxylate moiety is disordered over three sites and was refined with a fixed occupancy ratio of 1/3:1/3:1/3.

Table 1
Experimental details

Crystal data
Chemical formula C24H18FN3O2
Mr 399.41
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 18.4827 (12), 9.8467 (6), 22.0681 (15)
V3) 4016.3 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.43 × 0.28 × 0.13
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.970, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 37377, 3631, 2276
Rint 0.078
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.121, 1.06
No. of reflections 3631
No. of parameters 281
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.15
Computer programs: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl 2-(4-cyanophenyl)-1-(4-fluorobenzyl)-1H-benzo[d]imidazole-5-carboxylate top
Crystal data top
C24H18FN3O2Dx = 1.321 Mg m3
Mr = 399.41Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, PbcaCell parameters from 4608 reflections
a = 18.4827 (12) Åθ = 27.5–3.0°
b = 9.8467 (6) ŵ = 0.09 mm1
c = 22.0681 (15) ÅT = 293 K
V = 4016.3 (4) Å3Block, colourless
Z = 80.43 × 0.28 × 0.13 mm
F(000) = 1664
Data collection top
Rigaku Saturn724+
diffractometer
2276 reflections with I > 2σ(I)
profile data from ω–scansRint = 0.078
Absorption correction: multi-scan
(NUMABS; Rigaku, 1999)
θmax = 25.3°, θmin = 3.0°
Tmin = 0.970, Tmax = 0.988h = 2222
37377 measured reflectionsk = 1110
3631 independent reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0374P)2 + 1.0958P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.004
3631 reflectionsΔρmax = 0.11 e Å3
281 parametersΔρmin = 0.15 e Å3
3 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.80220 (9)0.00408 (18)0.68055 (7)0.1111 (6)
N10.57339 (10)0.24922 (19)0.49515 (8)0.0573 (5)
N20.45818 (10)0.2120 (2)0.46754 (8)0.0636 (5)
N30.61148 (16)0.2833 (3)0.23995 (11)0.1117 (9)
C10.60741 (14)0.0001 (2)0.41557 (11)0.0674 (7)
H10.63610.00500.45010.081*
C20.62374 (14)0.0929 (3)0.37106 (11)0.0708 (7)
H20.66360.14960.37550.085*
C30.58132 (14)0.1023 (3)0.32020 (11)0.0655 (7)
C40.52266 (15)0.0168 (3)0.31341 (11)0.0758 (8)
H40.49390.02270.27900.091*
C50.50686 (13)0.0770 (3)0.35759 (10)0.0680 (7)
H50.46760.13500.35260.082*
C60.54866 (12)0.0864 (2)0.40949 (10)0.0556 (6)
C70.59760 (16)0.2023 (3)0.27484 (13)0.0817 (8)
C80.52664 (13)0.1830 (2)0.45663 (10)0.0569 (6)
C90.65188 (11)0.2605 (2)0.49315 (10)0.0608 (6)
H9A0.66490.35590.49390.073*
H9B0.66890.22290.45510.073*
C100.69001 (12)0.1895 (2)0.54441 (9)0.0508 (6)
C110.76027 (12)0.2258 (2)0.55708 (11)0.0622 (6)
H110.78240.29360.53440.075*
C120.79824 (14)0.1634 (3)0.60266 (12)0.0758 (8)
H120.84580.18790.61090.091*
C130.76507 (16)0.0659 (3)0.63530 (11)0.0717 (7)
C140.69539 (15)0.0273 (3)0.62490 (12)0.0724 (7)
H140.67360.03950.64840.087*
C150.65808 (13)0.0898 (2)0.57864 (11)0.0661 (7)
H150.61060.06410.57050.079*
C160.53115 (13)0.3252 (2)0.53371 (10)0.0563 (6)
C170.45998 (13)0.3020 (2)0.51577 (10)0.0576 (6)
C180.40424 (13)0.3651 (3)0.54635 (11)0.0673 (7)
H180.35640.35070.53480.081*
C190.42048 (14)0.4497 (3)0.59418 (11)0.0636 (7)
C200.49223 (15)0.4708 (3)0.61153 (11)0.0696 (7)
H200.50220.52780.64410.084*
C210.54850 (14)0.4090 (3)0.58150 (11)0.0691 (7)
H210.59630.42330.59300.083*
O10.38006 (11)0.5953 (2)0.67054 (10)0.1065 (7)
O20.29671 (13)0.4915 (3)0.61495 (10)0.1189 (9)
C220.3591 (2)0.5116 (3)0.62677 (13)0.0830 (9)
C230.3227 (2)0.6538 (5)0.7078 (2)0.1504 (17)
H23A0.27880.60250.70020.181*0.3333
H23B0.33560.63930.74990.181*0.3333
H23C0.29140.71230.68410.181*0.3333
H23D0.29380.58350.72680.181*0.3333
H23E0.28630.69160.68110.181*0.3333
H23F0.30000.58090.73050.181*0.3333
C24A0.3082 (7)0.7746 (12)0.7016 (6)0.127 (4)0.3333
H24A0.35160.82750.70580.191*0.3333
H24B0.27390.80160.73190.191*0.3333
H24C0.28790.78930.66210.191*0.3333
C24B0.3638 (13)0.733 (2)0.7536 (12)0.127 (4)0.3333
H24D0.38980.67150.77960.191*0.3333
H24E0.33080.78590.77740.191*0.3333
H24F0.39740.79180.73350.191*0.3333
C24C0.3433 (12)0.753 (2)0.7480 (13)0.127 (4)0.3333
H24G0.37200.71320.77960.191*0.3333
H24H0.30110.79440.76520.191*0.3333
H24I0.37130.82050.72710.191*0.3333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1119 (13)0.1166 (14)0.1048 (12)0.0200 (11)0.0263 (11)0.0256 (11)
N10.0539 (11)0.0617 (12)0.0562 (11)0.0022 (11)0.0002 (10)0.0038 (10)
N20.0593 (13)0.0698 (14)0.0617 (13)0.0004 (11)0.0042 (10)0.0023 (11)
N30.127 (2)0.116 (2)0.0915 (19)0.0095 (18)0.0115 (16)0.0401 (17)
C10.0764 (18)0.0696 (18)0.0562 (14)0.0054 (15)0.0087 (13)0.0041 (13)
C20.0790 (18)0.0679 (18)0.0656 (16)0.0045 (14)0.0008 (14)0.0041 (14)
C30.0704 (17)0.0663 (18)0.0598 (16)0.0126 (14)0.0080 (13)0.0070 (13)
C40.0740 (18)0.094 (2)0.0593 (16)0.0140 (16)0.0077 (14)0.0109 (16)
C50.0638 (16)0.0791 (18)0.0611 (15)0.0006 (14)0.0044 (13)0.0043 (15)
C60.0590 (14)0.0560 (16)0.0520 (14)0.0051 (13)0.0000 (12)0.0008 (12)
C70.089 (2)0.087 (2)0.0694 (17)0.0167 (17)0.0108 (15)0.0171 (17)
C80.0608 (16)0.0571 (16)0.0527 (14)0.0017 (13)0.0045 (12)0.0043 (12)
C90.0550 (15)0.0632 (16)0.0642 (15)0.0093 (12)0.0044 (12)0.0008 (13)
C100.0501 (14)0.0511 (14)0.0513 (13)0.0018 (11)0.0067 (11)0.0067 (11)
C110.0560 (15)0.0618 (16)0.0687 (15)0.0083 (13)0.0041 (13)0.0036 (13)
C120.0558 (16)0.082 (2)0.0895 (19)0.0015 (15)0.0086 (15)0.0005 (17)
C130.077 (2)0.0712 (19)0.0669 (16)0.0156 (16)0.0055 (15)0.0065 (15)
C140.081 (2)0.0649 (18)0.0718 (17)0.0027 (15)0.0073 (15)0.0087 (14)
C150.0594 (15)0.0704 (18)0.0684 (16)0.0092 (14)0.0012 (13)0.0031 (14)
C160.0609 (16)0.0543 (16)0.0539 (14)0.0019 (13)0.0018 (12)0.0018 (13)
C170.0590 (16)0.0574 (16)0.0563 (14)0.0011 (13)0.0019 (12)0.0011 (12)
C180.0620 (16)0.0724 (18)0.0674 (16)0.0034 (14)0.0003 (13)0.0047 (14)
C190.0699 (17)0.0595 (16)0.0615 (15)0.0059 (14)0.0080 (13)0.0090 (13)
C200.086 (2)0.0636 (17)0.0593 (15)0.0017 (15)0.0043 (14)0.0079 (13)
C210.0655 (16)0.0726 (18)0.0690 (16)0.0041 (14)0.0003 (13)0.0104 (15)
O10.1117 (16)0.1008 (16)0.1070 (15)0.0137 (13)0.0386 (13)0.0309 (14)
O20.0819 (15)0.161 (2)0.1135 (17)0.0187 (15)0.0192 (14)0.0283 (15)
C220.094 (2)0.084 (2)0.0708 (19)0.014 (2)0.0188 (18)0.0010 (17)
C230.135 (3)0.159 (4)0.157 (3)0.020 (3)0.054 (3)0.062 (3)
C24A0.163 (10)0.085 (5)0.134 (6)0.013 (5)0.067 (7)0.017 (5)
C24B0.163 (10)0.085 (5)0.134 (6)0.013 (5)0.067 (7)0.017 (5)
C24C0.163 (10)0.085 (5)0.134 (6)0.013 (5)0.067 (7)0.017 (5)
Geometric parameters (Å, º) top
F1—C131.356 (3)C16—C211.377 (3)
N1—C161.376 (3)C16—C171.393 (3)
N1—C81.376 (3)C17—C181.379 (3)
N1—C91.456 (3)C18—C191.378 (3)
N2—C81.319 (3)C18—H180.9300
N2—C171.385 (3)C19—C201.396 (3)
N3—C71.138 (3)C19—C221.476 (4)
C1—C21.376 (3)C20—C211.375 (3)
C1—C61.386 (3)C20—H200.9300
C1—H10.9300C21—H210.9300
C2—C31.372 (3)O1—C221.328 (3)
C2—H20.9300O1—C231.460 (4)
C3—C41.381 (3)O2—C221.198 (3)
C3—C71.436 (4)C23—C24A1.227 (10)
C4—C51.375 (3)C23—C24C1.37 (2)
C4—H40.9300C23—C24B1.48 (2)
C5—C61.385 (3)C23—H23A0.9700
C5—H50.9300C23—H23B0.9700
C6—C81.467 (3)C23—H23C0.9700
C9—C101.505 (3)C23—H23D0.9700
C9—H9A0.9700C23—H23E0.9700
C9—H9B0.9700C23—H23F0.9700
C10—C151.372 (3)C24A—H24A0.9600
C10—C111.375 (3)C24A—H24B0.9600
C11—C121.371 (3)C24A—H24C0.9600
C11—H110.9300C24B—H24D0.9600
C12—C131.348 (3)C24B—H24E0.9600
C12—H120.9300C24B—H24F0.9600
C13—C141.362 (3)C24C—H24G0.9600
C14—C151.377 (3)C24C—H24H0.9600
C14—H140.9300C24C—H24I0.9600
C15—H150.9300
C16—N1—C8106.45 (18)C18—C17—C16119.5 (2)
C16—N1—C9122.88 (19)N2—C17—C16110.2 (2)
C8—N1—C9130.0 (2)C19—C18—C17119.0 (2)
C8—N2—C17104.81 (19)C19—C18—H18120.5
C2—C1—C6120.7 (2)C17—C18—H18120.5
C2—C1—H1119.6C18—C19—C20120.5 (2)
C6—C1—H1119.6C18—C19—C22117.1 (3)
C3—C2—C1120.2 (2)C20—C19—C22122.4 (3)
C3—C2—H2119.9C21—C20—C19121.4 (2)
C1—C2—H2119.9C21—C20—H20119.3
C2—C3—C4119.8 (2)C19—C20—H20119.3
C2—C3—C7119.8 (3)C20—C21—C16117.3 (2)
C4—C3—C7120.5 (2)C20—C21—H21121.4
C5—C4—C3120.0 (2)C16—C21—H21121.4
C5—C4—H4120.0C22—O1—C23116.3 (3)
C3—C4—H4120.0O2—C22—O1122.8 (3)
C4—C5—C6120.9 (2)O2—C22—C19124.5 (3)
C4—C5—H5119.6O1—C22—C19112.7 (3)
C6—C5—H5119.6C24A—C23—O1118.5 (7)
C5—C6—C1118.5 (2)C24C—C23—O1116.3 (10)
C5—C6—C8118.4 (2)C24B—C23—O1102.6 (10)
C1—C6—C8123.1 (2)C24A—C23—H23A107.7
N3—C7—C3178.3 (4)O1—C23—H23A107.7
N2—C8—N1112.8 (2)C24A—C23—H23B107.7
N2—C8—C6122.4 (2)O1—C23—H23B107.7
N1—C8—C6124.8 (2)H23A—C23—H23B107.1
N1—C9—C10114.12 (18)C24B—C23—H23C111.2
N1—C9—H9A108.7O1—C23—H23C111.2
C10—C9—H9A108.7C24B—C23—H23D111.2
N1—C9—H9B108.7O1—C23—H23D111.2
C10—C9—H9B108.7H23C—C23—H23D109.2
H9A—C9—H9B107.6C24C—C23—H23E108.2
C15—C10—C11118.7 (2)O1—C23—H23E108.2
C15—C10—C9123.0 (2)C24C—C23—H23F108.2
C11—C10—C9118.3 (2)O1—C23—H23F108.2
C12—C11—C10121.1 (2)H23E—C23—H23F107.4
C12—C11—H11119.5C23—C24A—H24A109.5
C10—C11—H11119.5C23—C24A—H24B109.5
C13—C12—C11118.6 (2)H24A—C24A—H24B109.5
C13—C12—H12120.7C23—C24A—H24C109.5
C11—C12—H12120.7H24A—C24A—H24C109.5
C12—C13—F1118.9 (3)H24B—C24A—H24C109.5
C12—C13—C14122.6 (2)C23—C24B—H24D109.5
F1—C13—C14118.5 (3)C23—C24B—H24E109.5
C13—C14—C15118.3 (2)H24D—C24B—H24E109.5
C13—C14—H14120.9C23—C24B—H24F109.5
C15—C14—H14120.9H24D—C24B—H24F109.5
C10—C15—C14120.8 (2)H24E—C24B—H24F109.5
C10—C15—H15119.6C23—C24C—H24G109.5
C14—C15—H15119.6C23—C24C—H24H109.5
N1—C16—C21131.9 (2)H24G—C24C—H24H109.5
N1—C16—C17105.7 (2)C23—C24C—H24I109.5
C21—C16—C17122.4 (2)H24G—C24C—H24I109.5
C18—C17—N2130.3 (2)H24H—C24C—H24I109.5
C6—C1—C2—C30.7 (4)C11—C10—C15—C140.2 (3)
C1—C2—C3—C40.8 (4)C9—C10—C15—C14179.6 (2)
C1—C2—C3—C7178.2 (2)C13—C14—C15—C100.8 (4)
C2—C3—C4—C50.1 (4)C8—N1—C16—C21178.9 (2)
C7—C3—C4—C5178.9 (2)C9—N1—C16—C219.5 (4)
C3—C4—C5—C60.7 (4)C8—N1—C16—C170.7 (2)
C4—C5—C6—C10.8 (4)C9—N1—C16—C17170.88 (19)
C4—C5—C6—C8176.5 (2)C8—N2—C17—C18179.6 (2)
C2—C1—C6—C50.1 (3)C8—N2—C17—C160.5 (2)
C2—C1—C6—C8177.0 (2)N1—C16—C17—C18180.0 (2)
C17—N2—C8—N10.0 (2)C21—C16—C17—C180.3 (3)
C17—N2—C8—C6178.0 (2)N1—C16—C17—N20.8 (3)
C16—N1—C8—N20.5 (3)C21—C16—C17—N2178.9 (2)
C9—N1—C8—N2170.3 (2)N2—C17—C18—C19178.9 (2)
C16—N1—C8—C6177.5 (2)C16—C17—C18—C190.1 (3)
C9—N1—C8—C611.7 (4)C17—C18—C19—C200.2 (4)
C5—C6—C8—N232.9 (3)C17—C18—C19—C22178.1 (2)
C1—C6—C8—N2144.3 (2)C18—C19—C20—C210.4 (4)
C5—C6—C8—N1149.4 (2)C22—C19—C20—C21178.2 (2)
C1—C6—C8—N133.5 (3)C19—C20—C21—C160.2 (4)
C16—N1—C9—C1077.3 (3)N1—C16—C21—C20179.7 (2)
C8—N1—C9—C10113.2 (3)C17—C16—C21—C200.2 (4)
N1—C9—C10—C1519.3 (3)C23—O1—C22—O25.3 (5)
N1—C9—C10—C11161.2 (2)C23—O1—C22—C19175.9 (3)
C15—C10—C11—C120.4 (3)C18—C19—C22—O21.2 (4)
C9—C10—C11—C12179.1 (2)C20—C19—C22—O2176.7 (3)
C10—C11—C12—C130.4 (4)C18—C19—C22—O1177.6 (2)
C11—C12—C13—F1179.8 (2)C20—C19—C22—O14.5 (4)
C11—C12—C13—C140.2 (4)C22—O1—C23—C24A108.1 (10)
C12—C13—C14—C150.8 (4)C22—O1—C23—C24C172.1 (14)
F1—C13—C14—C15179.6 (2)C22—O1—C23—C24B176.4 (12)
 

Acknowledgements

The authors thank DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds