organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-3-methyl­pyridinium 4-meth­­oxy­benzoate

CROSSMARK_Color_square_no_text.svg

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and cPostgraduate and Research Department of Physics, The American College, Madurai 625 002, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 July 2016; accepted 11 July 2016; online 19 July 2016)

In the title mol­ecular salt, C6H9N2+·C8H7O3, the cation is protonated at its pyridine N atom and is inclined by 3.39 (9)° to the benzene ring of the anion, which is deprotonated at the carboxyl group. The meth­oxy group is twisted with respect to the benzene ring to which it is attached, the methyl C atom deviating from the ring plane by 0.023 (2) Å. In the crystal, the anions and cations are linked by two N—H⋯O hydrogen bonds, forming an R22(8) ring motif. They are also linked by a weak offset ππ inter­action [centroid-to-centroid distance = 3.890 (1) Å]. The anions and cations are further connected through N—H⋯O and C—H⋯O hydrogen bonds, forming slabs parallel to (001).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine derivatives have been shown to exhibit anti­cancer (Girgis et al. 2006[Girgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466-4476.]) and anti­viral (Hamdouchi et al., 1999[Hamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50-59.]) activities. As part of our studies in this area we synthesized the title compound and report herein on its synthesis and crystal structure.

The geometric parameters of the title compound, Fig. 1[link], are comparable with those reported for similar structures (Babu et al., 2014[Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391-o392.]; Sivakumar et al., 2016[Sivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, b, x160747.]). The asymmetric unit contains a 2-amino-3-methyl­pyridinium cation, which is protonated at the pyridine N atom and a 4-meth­oxy­benzoate anion which is deprotonated at the carboxyl group. They are linked by two N—H⋯O hydrogen bonds, forming R22(8) ring-motifs (Table 1[link] and Fig. 2[link]). They are also linked by a weak offset ππ inter­action [Cg1⋯Cg2 = 3.890 (1) Å, inter­planar distance = 3.487 (1) Å, slippage = 1.896 Å, Cg1 and Cg2 are the centroids of rings C1–C6 and N1/C9–C13, respectively]. The benzene ring (C1–C6) makes a dihedral angle of 3.39 (9)° with the pyridine ring (N1/C9–C13). The meth­oxy group is twisted with respect to the benzene ring, the methyl atom C17 deviating from the ring plane by 0.023 (2) Å. The mean plane of the meth­oxy group (C1/O1/C7) is twisted at an angle of 3.49 (17)° with respect to the attached benzene ring.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.89 (1) 1.69 (1) 2.573 (2) 174 (2)
N2—H2A⋯O3i 0.86 2.01 2.8680 (19) 175
N2—H2B⋯O3ii 0.86 2.12 2.924 (2) 155
C2—H2⋯O2iii 0.93 2.57 3.419 (2) 152
C10—H10⋯O1iv 0.93 2.59 3.356 (2) 140
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, showing the atom labelling and 30% probability displacement ellipsoids.
[Figure 2]
Figure 2
A partial view of the crystal packing of the title mol­ecular salt, showing the R22(8) ring motifs. The hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

In the crystal, the anions and cations are further connected through N—H⋯O and C—H⋯O hydrogen bonds, forming slabs parallel to the ab plane (Table 1[link] and Fig. 3[link]).

[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the a axis. The hydrogen bonds are shown as dashed lines. C-bound H atoms which are not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

4-Meth­oxy benzoic acid (0.76 g) and 2-amino-3-methyl­pyridine (0.54 g) with 20 ml of acetone was magnetically stirred for 4 h in a round-bottomed flask, and the reaction mixture was kept for slow evaporation. Colourless block-like crystals were obtained after two weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H9N2+·C8H7O3
Mr 260.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 12.2526 (8), 6.6872 (3), 16.6376 (12)
β (°) 103.836 (4)
V3) 1323.66 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.26 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.976, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 18167, 3737, 2223
Rint 0.037
(sin θ/λ)max−1) 0.697
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.151, 1.08
No. of reflections 3737
No. of parameters 178
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

2-Amino-3-methylpyridinium 4-methoxybenzoate top
Crystal data top
C6H9N2+·C8H7O3F(000) = 552
Mr = 260.29Dx = 1.306 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3853 reflections
a = 12.2526 (8) Åθ = 2.0–25.1°
b = 6.6872 (3) ŵ = 0.09 mm1
c = 16.6376 (12) ÅT = 295 K
β = 103.836 (4)°Block, colourless
V = 1323.66 (14) Å30.26 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3737 independent reflections
Radiation source: fine-focus sealed tube2223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scanθmax = 29.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1717
Tmin = 0.976, Tmax = 0.982k = 99
18167 measured reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.4113P]
where P = (Fo2 + 2Fc2)/3
3737 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.85075 (14)0.0076 (3)0.11668 (11)0.0415 (4)
C20.79234 (15)0.1179 (3)0.15722 (12)0.0465 (5)
H20.71800.08990.15730.056*
C30.84426 (14)0.2841 (3)0.19738 (12)0.0430 (4)
H30.80450.36780.22480.052*
C40.95519 (13)0.3300 (2)0.19798 (10)0.0340 (4)
C51.01214 (14)0.2014 (3)0.15768 (12)0.0406 (4)
H51.08650.22890.15750.049*
C60.96139 (14)0.0324 (3)0.11746 (12)0.0444 (4)
H61.00150.05350.09120.053*
C70.8482 (2)0.3068 (3)0.03804 (14)0.0610 (6)
H7A0.91410.35410.07690.091*
H7B0.79920.41750.01830.091*
H7C0.86960.24390.00770.091*
C81.00960 (13)0.5140 (3)0.23994 (11)0.0377 (4)
C90.95005 (15)0.0433 (3)0.38533 (12)0.0481 (5)
H90.87940.01280.38090.058*
C100.97554 (17)0.2178 (3)0.42519 (14)0.0564 (5)
H100.92340.28370.44820.068*
C111.08219 (18)0.2974 (3)0.43122 (13)0.0516 (5)
H111.10130.41710.45960.062*
C121.15932 (15)0.2059 (3)0.39696 (11)0.0403 (4)
C131.12801 (13)0.0236 (3)0.35510 (10)0.0357 (4)
C141.27304 (17)0.2935 (3)0.40184 (14)0.0560 (5)
H14A1.28280.41060.43620.084*
H14B1.32970.19690.42520.084*
H14C1.27960.32910.34730.084*
N11.02534 (12)0.0519 (2)0.35162 (10)0.0401 (4)
N21.19561 (12)0.0814 (2)0.31892 (10)0.0455 (4)
H2A1.17280.19260.29470.055*
H2B1.26200.03790.31990.055*
O10.79184 (12)0.1675 (2)0.07713 (10)0.0602 (4)
O20.95301 (11)0.61756 (19)0.27896 (10)0.0536 (4)
O31.10690 (10)0.55837 (19)0.23454 (9)0.0515 (4)
H11.0056 (19)0.169 (2)0.3269 (14)0.073 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0378 (9)0.0431 (10)0.0424 (10)0.0075 (8)0.0071 (8)0.0015 (8)
C20.0307 (8)0.0560 (11)0.0548 (12)0.0073 (8)0.0142 (8)0.0037 (9)
C30.0325 (8)0.0477 (10)0.0517 (11)0.0008 (8)0.0157 (8)0.0036 (9)
C40.0301 (8)0.0338 (8)0.0387 (9)0.0003 (6)0.0094 (7)0.0040 (7)
C50.0286 (8)0.0437 (10)0.0514 (11)0.0021 (7)0.0134 (7)0.0013 (8)
C60.0365 (9)0.0461 (10)0.0528 (12)0.0018 (8)0.0149 (8)0.0079 (9)
C70.0735 (15)0.0456 (11)0.0607 (14)0.0047 (11)0.0099 (11)0.0098 (10)
C80.0330 (8)0.0340 (9)0.0478 (10)0.0003 (7)0.0130 (7)0.0042 (8)
C90.0357 (9)0.0589 (12)0.0514 (12)0.0015 (8)0.0139 (8)0.0008 (10)
C100.0487 (11)0.0648 (13)0.0602 (14)0.0108 (10)0.0219 (10)0.0088 (11)
C110.0584 (12)0.0463 (11)0.0507 (12)0.0022 (9)0.0144 (9)0.0097 (9)
C120.0406 (9)0.0416 (9)0.0375 (10)0.0019 (8)0.0068 (7)0.0011 (8)
C130.0334 (8)0.0381 (9)0.0348 (9)0.0029 (7)0.0066 (7)0.0037 (7)
C140.0520 (11)0.0566 (12)0.0598 (13)0.0170 (10)0.0138 (10)0.0111 (10)
N10.0356 (7)0.0402 (8)0.0450 (9)0.0013 (6)0.0106 (6)0.0010 (7)
N20.0344 (7)0.0430 (8)0.0615 (11)0.0054 (6)0.0166 (7)0.0108 (7)
O10.0490 (8)0.0609 (9)0.0712 (10)0.0175 (7)0.0152 (7)0.0210 (8)
O20.0435 (7)0.0443 (7)0.0809 (11)0.0060 (6)0.0302 (7)0.0153 (7)
O30.0378 (7)0.0470 (7)0.0757 (10)0.0092 (6)0.0255 (7)0.0111 (7)
Geometric parameters (Å, º) top
C1—O11.367 (2)C9—C101.341 (3)
C1—C61.379 (2)C9—N11.348 (2)
C1—C21.379 (3)C9—H90.9300
C2—C31.372 (3)C10—C111.392 (3)
C2—H20.9300C10—H100.9300
C3—C41.391 (2)C11—C121.360 (3)
C3—H30.9300C11—H110.9300
C4—C51.378 (2)C12—C131.411 (2)
C4—C81.491 (2)C12—C141.495 (3)
C5—C61.383 (2)C13—N21.334 (2)
C5—H50.9300C13—N11.344 (2)
C6—H60.9300C14—H14A0.9600
C7—O11.408 (3)C14—H14B0.9600
C7—H7A0.9600C14—H14C0.9600
C7—H7B0.9600N1—H10.888 (9)
C7—H7C0.9600N2—H2A0.8600
C8—O31.2525 (19)N2—H2B0.8600
C8—O21.264 (2)
O1—C1—C6124.11 (17)C10—C9—H9119.5
O1—C1—C2115.78 (16)N1—C9—H9119.5
C6—C1—C2120.10 (17)C9—C10—C11118.15 (18)
C3—C2—C1119.77 (16)C9—C10—H10120.9
C3—C2—H2120.1C11—C10—H10120.9
C1—C2—H2120.1C12—C11—C10122.14 (19)
C2—C3—C4121.36 (17)C12—C11—H11118.9
C2—C3—H3119.3C10—C11—H11118.9
C4—C3—H3119.3C11—C12—C13117.47 (16)
C5—C4—C3117.81 (16)C11—C12—C14122.21 (18)
C5—C4—C8121.39 (14)C13—C12—C14120.31 (16)
C3—C4—C8120.79 (15)N2—C13—N1117.31 (16)
C4—C5—C6121.59 (15)N2—C13—C12123.54 (15)
C4—C5—H5119.2N1—C13—C12119.14 (15)
C6—C5—H5119.2C12—C14—H14A109.5
C1—C6—C5119.36 (17)C12—C14—H14B109.5
C1—C6—H6120.3H14A—C14—H14B109.5
C5—C6—H6120.3C12—C14—H14C109.5
O1—C7—H7A109.5H14A—C14—H14C109.5
O1—C7—H7B109.5H14B—C14—H14C109.5
H7A—C7—H7B109.5C13—N1—C9122.09 (16)
O1—C7—H7C109.5C13—N1—H1119.9 (16)
H7A—C7—H7C109.5C9—N1—H1118.0 (16)
H7B—C7—H7C109.5C13—N2—H2A120.0
O3—C8—O2123.74 (16)C13—N2—H2B120.0
O3—C8—C4119.25 (15)H2A—N2—H2B120.0
O2—C8—C4117.00 (14)C1—O1—C7118.63 (15)
C10—C9—N1120.98 (18)
O1—C1—C2—C3178.87 (17)N1—C9—C10—C110.4 (3)
C6—C1—C2—C30.9 (3)C9—C10—C11—C121.2 (3)
C1—C2—C3—C40.2 (3)C10—C11—C12—C130.7 (3)
C2—C3—C4—C50.8 (3)C10—C11—C12—C14178.7 (2)
C2—C3—C4—C8178.34 (17)C11—C12—C13—N2179.89 (17)
C3—C4—C5—C60.3 (3)C14—C12—C13—N20.8 (3)
C8—C4—C5—C6178.86 (17)C11—C12—C13—N10.7 (3)
O1—C1—C6—C5178.34 (18)C14—C12—C13—N1179.99 (17)
C2—C1—C6—C51.4 (3)N2—C13—N1—C9179.22 (16)
C4—C5—C6—C10.8 (3)C12—C13—N1—C91.5 (3)
C5—C4—C8—O34.0 (3)C10—C9—N1—C131.0 (3)
C3—C4—C8—O3175.11 (17)C6—C1—O1—C73.4 (3)
C5—C4—C8—O2176.43 (17)C2—C1—O1—C7176.88 (18)
C3—C4—C8—O24.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.89 (1)1.69 (1)2.573 (2)174 (2)
N2—H2A···O3i0.862.012.8680 (19)175
N2—H2B···O3ii0.862.122.924 (2)155
C2—H2···O2iii0.932.573.419 (2)152
C10—H10···O1iv0.932.593.356 (2)140
Symmetry codes: (i) x, y+1, z; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBabu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391–o392.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGirgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466–4476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50–59.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, b, x160747.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds