organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Allyl-5-(2,5-di­methyl-1H-pyrrol-1-yl)-1H-indazole

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m_elghozlani@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 29 June 2016; accepted 10 July 2016; online 15 July 2016)

In the title compound, C16H17N3, the indazole ring system makes a dihedral angle of 64.73 (12)° with the pyrrole ring. The atoms of the allyl group are disordered over two sets of sites, with a refined occupancy ratio of 0.70 (3):0.30 (3). The mean plane through the major component of the allyl group is nearly perpendicular to the indazole ring, as indicated by the N—C—C=C torsion angle of −114 (1)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming undulating sheets parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indazole is recognized to be a highly effective pharmacophore in medicinal chemistry as well as being the core of important nitro­gen-containing heterocycles that show a broad range of biological activities (Cerecetto et al., 2005[Cerecetto, H., Gerpe, A., González, M., Arán, V. J. & de Ocáriz, C. O. (2005). Mini Rev. Med. Chem. 5, 869-878.]; Gaikwad et al., 2015[Gaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). Eur. J. Med. Chem. 90, 707-731.]; Jennings & Tennant, 2007[Jennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829-1838.]). Previously, our group has researched indazole derivatives with potential anti­cancer activity. Some of them exert pharmacologically inter­esting anti­proliferative/apoptotic activity against human and murine cell lines (Bouissane et al., 2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]; Abbassi et al., 2012[Abbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2014[Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423-431.]).

The mol­ecule of the title compound is built up from an indazole ring system (C1–C7/N2/N3) linked to an allyl group and to a 2,5-dimethyl-pyrrol-1-yl moiety, as shown in Fig. 1[link]. The mean plane of the major component of the allyl group, which is disordered over two positions, is almost perpendicular to the indazole ring as indicated by the N3—C14—C15A=C16A torsion angle of −114 (1)°. The pyrrole ring makes a dihedral angle of 64.73 (12)° with the indazole ring system.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The atoms of the allyl group (C15A/16A and C15B/16B) are disordered over two sets of sites.

In the crystal, mol­ecules are linked by C14—H14Bπ and C16A—H16Bπ inter­actions (Table 1[link]), forming undulating sheets parallel to (001), as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the N1/C2–C5 and C7–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14BCg1i 0.97 2.92 3.860 (3) 162
C16A—H16BCg3ii 0.93 2.98 3.783 (14) 145
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound, with the C—H⋯π inter­actions represented by dashed lines (see Table 1[link]). For clarity, only the H atoms involved in these inter­actions (grey balls), and the atoms of the major component of the disordered allyl group, have been included.

Synthesis and crystallization

1-Allyl-5-nitro­indazole (1.0 mmol) was added to a mixture of anhydrous SnCl2 powder (460 mg, 4.0 mmol), and acetic acid (0.572 ml, 10 mmol) in tetra­hydro­furan (10 ml), followed by the addition of 2,5-hexa­dione (1.0 mmol) in THF (15 ml). The reaction mixture was stirred at 353 K for 4 h. After the reaction was completed, the mixture was diluted with ethyl acetate (30 ml), poured into 10% NaHCO3 (30 ml), and then extracted with ethyl acetate (3 × 50 ml). The combined organic extracts were dried over MgSO4, filtered and concentrated. The residue was purified by column chroma­tography on silica gel using ethyl acetate/hexane (3:7) to afford the title compound indazole in good yield. The title compound was recrystallized from ethyl ether at room temperature giving colourless crystals (m.p. 360 K, yield 68%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The atoms of the allyl group are disordered over two sets of sites, with a refined occupancy ratio of 0.70 (3):0.30 (3).

Table 2
Experimental details

Crystal data
Chemical formula C16H17N3
Mr 251.32
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 7.5140 (2), 10.3737 (3), 17.8484 (5)
V3) 1391.25 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.37 × 0.32 × 0.27
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.626, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23639, 3598, 2453
Rint 0.050
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.03
No. of reflections 3598
No. of parameters 193
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

1-Allyl-5-(2,5-dimethyl-1H-pyrrol-1-yl)-1H-indazole top
Crystal data top
C16H17N3Dx = 1.200 Mg m3
Mr = 251.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3598 reflections
a = 7.5140 (2) Åθ = 2.3–28.7°
b = 10.3737 (3) ŵ = 0.07 mm1
c = 17.8484 (5) ÅT = 296 K
V = 1391.25 (7) Å3Block, colourless
Z = 40.37 × 0.32 × 0.27 mm
F(000) = 536
Data collection top
Bruker X8 APEX
diffractometer
3598 independent reflections
Radiation source: fine-focus sealed tube2453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 28.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.626, Tmax = 0.746k = 1314
23639 measured reflectionsl = 2224
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.1215P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3598 reflectionsΔρmax = 0.12 e Å3
193 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0292 (4)0.5717 (3)0.39588 (19)0.0704 (8)
H1A0.09240.60020.39520.106*
H1B0.04830.51730.43860.106*
H1C0.05420.52420.35090.106*
C20.1492 (3)0.6855 (2)0.40034 (14)0.0526 (6)
C30.1113 (4)0.8125 (3)0.41117 (16)0.0642 (7)
H30.00150.84760.41770.077*
C40.2731 (4)0.8816 (3)0.41073 (16)0.0637 (7)
H40.28490.97010.41730.076*
C50.4079 (3)0.7978 (2)0.39917 (14)0.0508 (6)
C60.6036 (4)0.8194 (3)0.39599 (18)0.0669 (8)
H6A0.64580.80190.34630.100*
H6B0.66180.76290.43090.100*
H6C0.62940.90730.40880.100*
C70.4314 (3)0.5599 (2)0.38047 (12)0.0425 (5)
C80.4341 (3)0.4660 (2)0.43402 (12)0.0450 (5)
H80.37240.47600.47880.054*
C90.5322 (3)0.3540 (2)0.41963 (12)0.0462 (5)
C100.5682 (5)0.2378 (3)0.45860 (15)0.0653 (8)
H100.52270.21800.50570.078*
C110.6264 (3)0.3416 (2)0.35235 (12)0.0438 (5)
C120.6233 (3)0.4369 (2)0.29737 (13)0.0503 (6)
H120.68550.42780.25260.060*
C130.5245 (3)0.5446 (2)0.31236 (12)0.0487 (6)
H130.51840.60960.27660.058*
C140.8354 (4)0.1698 (3)0.30186 (16)0.0643 (7)
H14A0.80830.07940.29380.077*
H14B0.82430.21390.25420.077*
C15A1.0165 (13)0.1818 (11)0.3286 (4)0.070 (3)0.70 (3)
H15A1.05290.13680.37100.085*0.70 (3)
C16A1.1372 (15)0.2616 (18)0.2904 (7)0.105 (4)0.70 (3)
H16A1.10060.30650.24800.126*0.70 (3)
H16B1.25360.26950.30740.126*0.70 (3)
C15B1.030 (6)0.243 (5)0.309 (3)0.138 (19)0.30 (3)
H15B1.03360.33280.30710.166*0.30 (3)
C16B1.132 (8)0.199 (3)0.316 (2)0.151 (17)0.30 (3)
H16C1.12990.10990.31830.181*0.30 (3)
H16D1.23900.24360.31990.181*0.30 (3)
N10.3325 (3)0.67630 (18)0.39266 (10)0.0462 (5)
N20.6734 (4)0.1615 (2)0.42016 (13)0.0692 (7)
N30.7080 (3)0.2236 (2)0.35444 (12)0.0563 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0457 (16)0.0734 (19)0.092 (2)0.0031 (14)0.0043 (15)0.0055 (16)
C20.0426 (13)0.0607 (16)0.0546 (14)0.0065 (12)0.0006 (11)0.0010 (12)
C30.0513 (16)0.0661 (18)0.0752 (17)0.0171 (14)0.0004 (14)0.0065 (14)
C40.0691 (19)0.0468 (14)0.0752 (17)0.0099 (14)0.0047 (16)0.0010 (12)
C50.0530 (15)0.0449 (13)0.0546 (14)0.0015 (11)0.0004 (12)0.0056 (11)
C60.0565 (16)0.0588 (17)0.0855 (19)0.0083 (14)0.0088 (14)0.0007 (15)
C70.0370 (12)0.0438 (12)0.0467 (12)0.0006 (10)0.0001 (10)0.0013 (10)
C80.0476 (13)0.0479 (13)0.0396 (11)0.0006 (11)0.0035 (10)0.0000 (10)
C90.0496 (14)0.0454 (13)0.0437 (11)0.0016 (11)0.0016 (10)0.0002 (10)
C100.092 (2)0.0473 (15)0.0570 (14)0.0094 (15)0.0060 (15)0.0055 (12)
C110.0381 (12)0.0457 (13)0.0475 (12)0.0000 (11)0.0049 (9)0.0054 (10)
C120.0460 (14)0.0629 (16)0.0419 (12)0.0034 (12)0.0054 (10)0.0006 (11)
C130.0463 (14)0.0561 (14)0.0436 (11)0.0024 (12)0.0024 (10)0.0095 (11)
C140.0605 (17)0.0608 (16)0.0715 (17)0.0099 (14)0.0018 (14)0.0227 (14)
C15A0.049 (4)0.096 (6)0.067 (3)0.026 (4)0.006 (2)0.025 (3)
C16A0.054 (5)0.147 (11)0.114 (6)0.022 (5)0.020 (4)0.063 (6)
C15B0.11 (3)0.10 (2)0.20 (4)0.04 (2)0.00 (3)0.07 (3)
C16B0.20 (5)0.078 (15)0.17 (2)0.007 (19)0.07 (3)0.008 (15)
N10.0425 (11)0.0444 (11)0.0516 (10)0.0053 (9)0.0010 (9)0.0027 (9)
N20.0916 (18)0.0497 (12)0.0662 (13)0.0146 (13)0.0013 (13)0.0042 (11)
N30.0586 (14)0.0523 (12)0.0582 (13)0.0122 (11)0.0016 (10)0.0087 (10)
Geometric parameters (Å, º) top
C1—C21.488 (4)C9—C101.418 (3)
C2—C31.361 (4)C10—N21.312 (4)
C2—N11.387 (3)C11—N31.370 (3)
C3—C41.411 (4)C11—C121.393 (3)
C4—C51.350 (4)C12—C131.368 (3)
C5—N11.387 (3)C14—C15A1.448 (9)
C5—C61.489 (4)C14—N31.452 (3)
C7—C81.366 (3)C14—C15B1.65 (5)
C7—C131.412 (3)C15A—C16A1.40 (2)
C7—N11.434 (3)C15B—C16B0.90 (7)
C8—C91.399 (3)N2—N31.364 (3)
C9—C111.400 (3)
C3—C2—N1106.7 (2)N3—C11—C12131.4 (2)
C3—C2—C1130.4 (2)N3—C11—C9106.6 (2)
N1—C2—C1122.8 (2)C12—C11—C9122.0 (2)
C2—C3—C4108.1 (2)C13—C12—C11116.8 (2)
C5—C4—C3108.7 (2)C12—C13—C7122.0 (2)
C4—C5—N1106.9 (2)C15A—C14—N3111.9 (4)
C4—C5—C6130.5 (2)N3—C14—C15B110.6 (12)
N1—C5—C6122.5 (2)C16A—C15A—C14119.8 (10)
C8—C7—C13121.0 (2)C16B—C15B—C14122 (7)
C8—C7—N1120.16 (19)C5—N1—C2109.6 (2)
C13—C7—N1118.8 (2)C5—N1—C7124.47 (19)
C7—C8—C9118.2 (2)C2—N1—C7126.0 (2)
C8—C9—C11120.0 (2)C10—N2—N3106.2 (2)
C8—C9—C10135.7 (2)N2—N3—C11111.1 (2)
C11—C9—C10104.2 (2)N2—N3—C14120.0 (2)
N2—C10—C9111.8 (2)C11—N3—C14128.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the N1/C2–C5 and C7–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14B···Cg1i0.972.923.860 (3)162
C16A—H16B···Cg3ii0.932.983.783 (14)145
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationAbbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431.  Web of Science CrossRef CAS Google Scholar
First citationBouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCerecetto, H., Gerpe, A., González, M., Arán, V. J. & de Ocáriz, C. O. (2005). Mini Rev. Med. Chem. 5, 869–878.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). Eur. J. Med. Chem. 90, 707–731.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829–1838.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds