organic compounds
1-Allyl-5-(2,5-dimethyl-1H-pyrrol-1-yl)-1H-indazole
aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m_elghozlani@yahoo.fr
In the title compound, C16H17N3, the indazole ring system makes a dihedral angle of 64.73 (12)° with the pyrrole ring. The atoms of the allyl group are disordered over two sets of sites, with a refined occupancy ratio of 0.70 (3):0.30 (3). The mean plane through the major component of the allyl group is nearly perpendicular to the indazole ring, as indicated by the N—C—C=C torsion angle of −114 (1)°. In the crystal, molecules are linked by C—H⋯π interactions, forming undulating sheets parallel to the ab plane.
Keywords: crystal structure; 2,5-dimethylpyrrole; indazole; hydrogen bonds.
CCDC reference: 1491842
Structure description
Indazole is recognized to be a highly effective pharmacophore in medicinal chemistry as well as being the core of important nitrogen-containing heterocycles that show a broad range of biological activities (Cerecetto et al., 2005; Gaikwad et al., 2015; Jennings & Tennant, 2007). Previously, our group has researched indazole derivatives with potential anticancer activity. Some of them exert pharmacologically interesting antiproliferative/apoptotic activity against human and murine cell lines (Bouissane et al., 2006; Abbassi et al., 2012, 2014).
The molecule of the title compound is built up from an indazole ring system (C1–C7/N2/N3) linked to an allyl group and to a 2,5-dimethyl-pyrrol-1-yl moiety, as shown in Fig. 1. The mean plane of the major component of the allyl group, which is disordered over two positions, is almost perpendicular to the indazole ring as indicated by the N3—C14—C15A=C16A torsion angle of −114 (1)°. The pyrrole ring makes a dihedral angle of 64.73 (12)° with the indazole ring system.
In the crystal, molecules are linked by C14—H14B⋯π and C16A—H16B⋯π interactions (Table 1), forming undulating sheets parallel to (001), as shown in Fig. 2.
Synthesis and crystallization
1-Allyl-5-nitroindazole (1.0 mmol) was added to a mixture of anhydrous SnCl2 powder (460 mg, 4.0 mmol), and acetic acid (0.572 ml, 10 mmol) in tetrahydrofuran (10 ml), followed by the addition of 2,5-hexadione (1.0 mmol) in THF (15 ml). The reaction mixture was stirred at 353 K for 4 h. After the reaction was completed, the mixture was diluted with ethyl acetate (30 ml), poured into 10% NaHCO3 (30 ml), and then extracted with ethyl acetate (3 × 50 ml). The combined organic extracts were dried over MgSO4, filtered and concentrated. The residue was purified by column chromatography on silica gel using ethyl acetate/hexane (3:7) to afford the title compound indazole in good yield. The title compound was recrystallized from ethyl ether at room temperature giving colourless crystals (m.p. 360 K, yield 68%).
Refinement
Crystal data, data collection and structure . The atoms of the allyl group are disordered over two sets of sites, with a refined occupancy ratio of 0.70 (3):0.30 (3).
details are summarized in Table 2Structural data
CCDC reference: 1491842
https://doi.org/10.1107/S2414314616011214/su4060sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616011214/su4060Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616011214/su4060Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).C16H17N3 | Dx = 1.200 Mg m−3 |
Mr = 251.32 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 3598 reflections |
a = 7.5140 (2) Å | θ = 2.3–28.7° |
b = 10.3737 (3) Å | µ = 0.07 mm−1 |
c = 17.8484 (5) Å | T = 296 K |
V = 1391.25 (7) Å3 | Block, colourless |
Z = 4 | 0.37 × 0.32 × 0.27 mm |
F(000) = 536 |
Bruker X8 APEX diffractometer | 3598 independent reflections |
Radiation source: fine-focus sealed tube | 2453 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
φ and ω scans | θmax = 28.7°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −10→10 |
Tmin = 0.626, Tmax = 0.746 | k = −13→14 |
23639 measured reflections | l = −22→24 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0487P)2 + 0.1215P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3598 reflections | Δρmax = 0.12 e Å−3 |
193 parameters | Δρmin = −0.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.0292 (4) | 0.5717 (3) | 0.39588 (19) | 0.0704 (8) | |
H1A | −0.0924 | 0.6002 | 0.3952 | 0.106* | |
H1B | 0.0483 | 0.5173 | 0.4386 | 0.106* | |
H1C | 0.0542 | 0.5242 | 0.3509 | 0.106* | |
C2 | 0.1492 (3) | 0.6855 (2) | 0.40034 (14) | 0.0526 (6) | |
C3 | 0.1113 (4) | 0.8125 (3) | 0.41117 (16) | 0.0642 (7) | |
H3 | −0.0015 | 0.8476 | 0.4177 | 0.077* | |
C4 | 0.2731 (4) | 0.8816 (3) | 0.41073 (16) | 0.0637 (7) | |
H4 | 0.2849 | 0.9701 | 0.4173 | 0.076* | |
C5 | 0.4079 (3) | 0.7978 (2) | 0.39917 (14) | 0.0508 (6) | |
C6 | 0.6036 (4) | 0.8194 (3) | 0.39599 (18) | 0.0669 (8) | |
H6A | 0.6458 | 0.8019 | 0.3463 | 0.100* | |
H6B | 0.6618 | 0.7629 | 0.4309 | 0.100* | |
H6C | 0.6294 | 0.9073 | 0.4088 | 0.100* | |
C7 | 0.4314 (3) | 0.5599 (2) | 0.38047 (12) | 0.0425 (5) | |
C8 | 0.4341 (3) | 0.4660 (2) | 0.43402 (12) | 0.0450 (5) | |
H8 | 0.3724 | 0.4760 | 0.4788 | 0.054* | |
C9 | 0.5322 (3) | 0.3540 (2) | 0.41963 (12) | 0.0462 (5) | |
C10 | 0.5682 (5) | 0.2378 (3) | 0.45860 (15) | 0.0653 (8) | |
H10 | 0.5227 | 0.2180 | 0.5057 | 0.078* | |
C11 | 0.6264 (3) | 0.3416 (2) | 0.35235 (12) | 0.0438 (5) | |
C12 | 0.6233 (3) | 0.4369 (2) | 0.29737 (13) | 0.0503 (6) | |
H12 | 0.6855 | 0.4278 | 0.2526 | 0.060* | |
C13 | 0.5245 (3) | 0.5446 (2) | 0.31236 (12) | 0.0487 (6) | |
H13 | 0.5184 | 0.6096 | 0.2766 | 0.058* | |
C14 | 0.8354 (4) | 0.1698 (3) | 0.30186 (16) | 0.0643 (7) | |
H14A | 0.8083 | 0.0794 | 0.2938 | 0.077* | |
H14B | 0.8243 | 0.2139 | 0.2542 | 0.077* | |
C15A | 1.0165 (13) | 0.1818 (11) | 0.3286 (4) | 0.070 (3) | 0.70 (3) |
H15A | 1.0529 | 0.1368 | 0.3710 | 0.085* | 0.70 (3) |
C16A | 1.1372 (15) | 0.2616 (18) | 0.2904 (7) | 0.105 (4) | 0.70 (3) |
H16A | 1.1006 | 0.3065 | 0.2480 | 0.126* | 0.70 (3) |
H16B | 1.2536 | 0.2695 | 0.3074 | 0.126* | 0.70 (3) |
C15B | 1.030 (6) | 0.243 (5) | 0.309 (3) | 0.138 (19) | 0.30 (3) |
H15B | 1.0336 | 0.3328 | 0.3071 | 0.166* | 0.30 (3) |
C16B | 1.132 (8) | 0.199 (3) | 0.316 (2) | 0.151 (17) | 0.30 (3) |
H16C | 1.1299 | 0.1099 | 0.3183 | 0.181* | 0.30 (3) |
H16D | 1.2390 | 0.2436 | 0.3199 | 0.181* | 0.30 (3) |
N1 | 0.3325 (3) | 0.67630 (18) | 0.39266 (10) | 0.0462 (5) | |
N2 | 0.6734 (4) | 0.1615 (2) | 0.42016 (13) | 0.0692 (7) | |
N3 | 0.7080 (3) | 0.2236 (2) | 0.35444 (12) | 0.0563 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0457 (16) | 0.0734 (19) | 0.092 (2) | −0.0031 (14) | 0.0043 (15) | −0.0055 (16) |
C2 | 0.0426 (13) | 0.0607 (16) | 0.0546 (14) | 0.0065 (12) | 0.0006 (11) | −0.0010 (12) |
C3 | 0.0513 (16) | 0.0661 (18) | 0.0752 (17) | 0.0171 (14) | −0.0004 (14) | −0.0065 (14) |
C4 | 0.0691 (19) | 0.0468 (14) | 0.0752 (17) | 0.0099 (14) | −0.0047 (16) | −0.0010 (12) |
C5 | 0.0530 (15) | 0.0449 (13) | 0.0546 (14) | 0.0015 (11) | −0.0004 (12) | 0.0056 (11) |
C6 | 0.0565 (16) | 0.0588 (17) | 0.0855 (19) | −0.0083 (14) | 0.0088 (14) | 0.0007 (15) |
C7 | 0.0370 (12) | 0.0438 (12) | 0.0467 (12) | 0.0006 (10) | 0.0001 (10) | 0.0013 (10) |
C8 | 0.0476 (13) | 0.0479 (13) | 0.0396 (11) | −0.0006 (11) | 0.0035 (10) | 0.0000 (10) |
C9 | 0.0496 (14) | 0.0454 (13) | 0.0437 (11) | 0.0016 (11) | −0.0016 (10) | 0.0002 (10) |
C10 | 0.092 (2) | 0.0473 (15) | 0.0570 (14) | 0.0094 (15) | 0.0060 (15) | 0.0055 (12) |
C11 | 0.0381 (12) | 0.0457 (13) | 0.0475 (12) | 0.0000 (11) | −0.0049 (9) | −0.0054 (10) |
C12 | 0.0460 (14) | 0.0629 (16) | 0.0419 (12) | 0.0034 (12) | 0.0054 (10) | −0.0006 (11) |
C13 | 0.0463 (14) | 0.0561 (14) | 0.0436 (11) | 0.0024 (12) | 0.0024 (10) | 0.0095 (11) |
C14 | 0.0605 (17) | 0.0608 (16) | 0.0715 (17) | 0.0099 (14) | −0.0018 (14) | −0.0227 (14) |
C15A | 0.049 (4) | 0.096 (6) | 0.067 (3) | 0.026 (4) | −0.006 (2) | −0.025 (3) |
C16A | 0.054 (5) | 0.147 (11) | 0.114 (6) | −0.022 (5) | 0.020 (4) | −0.063 (6) |
C15B | 0.11 (3) | 0.10 (2) | 0.20 (4) | 0.04 (2) | 0.00 (3) | −0.07 (3) |
C16B | 0.20 (5) | 0.078 (15) | 0.17 (2) | −0.007 (19) | 0.07 (3) | −0.008 (15) |
N1 | 0.0425 (11) | 0.0444 (11) | 0.0516 (10) | 0.0053 (9) | 0.0010 (9) | 0.0027 (9) |
N2 | 0.0916 (18) | 0.0497 (12) | 0.0662 (13) | 0.0146 (13) | −0.0013 (13) | 0.0042 (11) |
N3 | 0.0586 (14) | 0.0523 (12) | 0.0582 (13) | 0.0122 (11) | −0.0016 (10) | −0.0087 (10) |
C1—C2 | 1.488 (4) | C9—C10 | 1.418 (3) |
C2—C3 | 1.361 (4) | C10—N2 | 1.312 (4) |
C2—N1 | 1.387 (3) | C11—N3 | 1.370 (3) |
C3—C4 | 1.411 (4) | C11—C12 | 1.393 (3) |
C4—C5 | 1.350 (4) | C12—C13 | 1.368 (3) |
C5—N1 | 1.387 (3) | C14—C15A | 1.448 (9) |
C5—C6 | 1.489 (4) | C14—N3 | 1.452 (3) |
C7—C8 | 1.366 (3) | C14—C15B | 1.65 (5) |
C7—C13 | 1.412 (3) | C15A—C16A | 1.40 (2) |
C7—N1 | 1.434 (3) | C15B—C16B | 0.90 (7) |
C8—C9 | 1.399 (3) | N2—N3 | 1.364 (3) |
C9—C11 | 1.400 (3) | ||
C3—C2—N1 | 106.7 (2) | N3—C11—C12 | 131.4 (2) |
C3—C2—C1 | 130.4 (2) | N3—C11—C9 | 106.6 (2) |
N1—C2—C1 | 122.8 (2) | C12—C11—C9 | 122.0 (2) |
C2—C3—C4 | 108.1 (2) | C13—C12—C11 | 116.8 (2) |
C5—C4—C3 | 108.7 (2) | C12—C13—C7 | 122.0 (2) |
C4—C5—N1 | 106.9 (2) | C15A—C14—N3 | 111.9 (4) |
C4—C5—C6 | 130.5 (2) | N3—C14—C15B | 110.6 (12) |
N1—C5—C6 | 122.5 (2) | C16A—C15A—C14 | 119.8 (10) |
C8—C7—C13 | 121.0 (2) | C16B—C15B—C14 | 122 (7) |
C8—C7—N1 | 120.16 (19) | C5—N1—C2 | 109.6 (2) |
C13—C7—N1 | 118.8 (2) | C5—N1—C7 | 124.47 (19) |
C7—C8—C9 | 118.2 (2) | C2—N1—C7 | 126.0 (2) |
C8—C9—C11 | 120.0 (2) | C10—N2—N3 | 106.2 (2) |
C8—C9—C10 | 135.7 (2) | N2—N3—C11 | 111.1 (2) |
C11—C9—C10 | 104.2 (2) | N2—N3—C14 | 120.0 (2) |
N2—C10—C9 | 111.8 (2) | C11—N3—C14 | 128.4 (2) |
Cg1 and Cg3 are the centroids of the N1/C2–C5 and C7–C13 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14B···Cg1i | 0.97 | 2.92 | 3.860 (3) | 162 |
C16A—H16B···Cg3ii | 0.93 | 2.98 | 3.783 (14) | 145 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1, y, z. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.
References
Abbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249. Web of Science CrossRef CAS PubMed Google Scholar
Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431. Web of Science CrossRef CAS Google Scholar
Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Cerecetto, H., Gerpe, A., González, M., Arán, V. J. & de Ocáriz, C. O. (2005). Mini Rev. Med. Chem. 5, 869–878. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). Eur. J. Med. Chem. 90, 707–731. Web of Science CrossRef CAS PubMed Google Scholar
Jennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829–1838. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.