organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-1-methyl-4-oxo-4,5-di­hydro-1H-imidazol-3-ium 4-methyl­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ppkpresidency@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 June 2016; accepted 11 July 2016; online 15 July 2016)

The title mol­ecular salt, C4H8N3O+·C7H7O3S, is composed of a 2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium cation and a 4-methyl­benzene­sulfonate anion. The cation is protonated at its N atom and the anion is deprotonated at its hy­droxy O atom. The imidazole ring is planar (r.m.s. deviation = 0.033 Å) and makes a dihedral angle of 7.87 (10)° with the benzene ring of the anion. In the crystal, the anions and cations are connected by two N—H⋯O hydrogen bonds, generating an R22(8) ring motif. These units are linked by further N—H⋯O hydrogen bonds and C—H⋯O and C—H⋯π contacts to form chains propagating along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Creatinine is found in the muscle tissue of vertebrates, mainly in the form of phospho­creatine, and supplies energy for muscle contraction. It has been proven that determination of creatinine is more valuable for the detection of renal dysfunction than that of urea (Sharma et al., 2004[Sharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. & Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971-2977.]). Abnormal levels of creatinine in biological fluids is an indicator of various disease states (Narayanan & Appleton, 1980[Narayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119-1126.]). Benzene­sulfonic acid is a particularly strong organic acid which is capable of protonating N-containing heterocycles and other Lewis bases (Wang & Wei, 2007[Wang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o1448-o1449.]). We report herein on the synthesis and crystal structure of the title mol­ecular salt. The geometric parameters are comparable with those of similar structures (Moghimi et al., 2004[Moghimi, A., Sharif, M. A. & Aghabozorg, H. (2004). Acta Cryst. E60, o1790-o1792.]; Hemamalini et al., 2005[Hemamalini, M., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95-o97.])

The title mol­ecular salt, Fig. 1[link], contains a 2-amino-1-methyl-5H-imidazolium-4-one cation (protonated at the N atom, N1, in the imidazole unit) and a 4-methyl­benzene­sulfonate anion (deprotonated at the hydroxyl O atom, O1). The imidazole ring is almost planar (r.m.s. deviation = 0.033 Å) and makes a dihedral angle of 7.87 (10)° with the benzene ring (C1–C6) of the anion.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, showing the atom labelling and 30% probability displacement ellipsoids.

In the crystal, the anions and cations are connected by two N—H⋯O hydrogen bonds, generating an [R_{2}^{2}](8) ring motif (Table 1[link] and Fig. 2[link]). These units are linked by further N—H⋯O hydrogen bonds and C—H⋯O and C—H⋯π contacts to form chains propagating along the a-axis direction (Table 1[link] and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.89 (1) 2.09 (1) 2.967 (2) 171 (2)
N1—H1⋯O3ii 0.87 (1) 1.94 (1) 2.811 (2) 173 (2)
N3—H3B⋯O1ii 0.88 (1) 1.96 (1) 2.813 (2) 163 (2)
C10—H10B⋯O2 0.97 2.59 3.463 (3) 150
C11—H11CCg1 0.96 2.78 3.537 (2) 136
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
A partial view of the crystal packing of the title salt, showing the formation of the [R_{2}^{2}](8) ring motifs. Hydrogen bonds (see Table 1[link]) are shown as dashed lines and C-bound H atoms have been omitted for clarity.
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds (see Table 1[link]) are shown as dashed lines and C-bound H atoms have been omitted for clarity.

Synthesis and crystallization

Creatinine (2-amino-1-methyl-5H-imidazol-4-one) (1.13 g, 0.01 mol) and 4-methyl­benzene­sulfonic acid monohydrate (1.90 g, 0.01 mol) were dissolved in deionized water. The solution was stirred well for 3 h, filtered and kept in a dust-free environment for evaporation. Crystals were obtained over a period of five days by slow evaporation of the solvent, and subjected to single-crystal X-ray diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C4H8N3O+·C7H7O3S
Mr 285.32
Crystal system, space group Orthorhombic, P212121
Temperature (K) 295
a, b, c (Å) 7.0564 (4), 7.8593 (5), 24.1907 (18)
V3) 1341.58 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.28 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.932, 0.951
No. of measured, independent and observed [I > 2σ(I)] reflections 19256, 4179, 3607
Rint 0.026
(sin θ/λ)max−1) 0.743
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.05
No. of reflections 4179
No. of parameters 185
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.35
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1712 Friedal pairs
Absolute structure parameter 0.04 (8)
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

2-Amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium 4-methylbenzenesulfonate top
Crystal data top
C4H8N3O+·C7H7O3SF(000) = 600
Mr = 285.32Dx = 1.413 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8207 reflections
a = 7.0564 (4) Åθ = 2.2–27.9°
b = 7.8593 (5) ŵ = 0.26 mm1
c = 24.1907 (18) ÅT = 295 K
V = 1341.58 (15) Å3Block, colourless
Z = 40.28 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4179 independent reflections
Radiation source: fine-focus sealed tube3607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scanθmax = 31.9°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.932, Tmax = 0.951k = 1011
19256 measured reflectionsl = 3335
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.2554P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4179 reflectionsΔρmax = 0.23 e Å3
185 parametersΔρmin = 0.35 e Å3
3 restraintsAbsolute structure: Flack (1983), 1712 Friedal pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5492 (2)0.7635 (2)0.66004 (6)0.0310 (3)
C20.3811 (3)0.8465 (2)0.64735 (8)0.0393 (4)
H20.36690.90120.61350.047*
C30.2352 (3)0.8472 (3)0.68525 (9)0.0466 (5)
H30.12290.90330.67670.056*
C40.2524 (3)0.7658 (3)0.73601 (8)0.0448 (4)
C50.4206 (3)0.6824 (3)0.74788 (8)0.0447 (4)
H50.43420.62620.78150.054*
C60.5697 (3)0.6816 (3)0.71009 (7)0.0386 (4)
H60.68240.62610.71860.046*
C70.0916 (4)0.7681 (4)0.77703 (11)0.0697 (8)
H7A0.05930.88380.78570.105*
H7B0.12970.71020.81020.105*
H7C0.01650.71180.76140.105*
C80.5860 (3)0.3940 (2)0.50931 (8)0.0369 (4)
C90.3041 (2)0.4880 (2)0.53959 (7)0.0306 (3)
C100.5602 (3)0.3361 (2)0.56814 (8)0.0394 (4)
H10A0.55540.21290.57050.047*
H10B0.66140.37780.59160.047*
C110.2787 (4)0.3750 (3)0.63391 (8)0.0493 (5)
H11A0.36250.31920.65930.074*
H11B0.17280.30220.62610.074*
H11C0.23410.47930.65000.074*
N10.4224 (2)0.47883 (19)0.49552 (6)0.0322 (3)
N20.3792 (2)0.41182 (19)0.58312 (6)0.0340 (3)
N30.1389 (2)0.5624 (2)0.53732 (7)0.0436 (4)
O10.6482 (2)0.73257 (19)0.55797 (5)0.0480 (3)
O20.8645 (2)0.6292 (2)0.62769 (6)0.0511 (4)
O30.8221 (2)0.93207 (17)0.61315 (6)0.0462 (3)
O40.7202 (2)0.3721 (2)0.47927 (7)0.0546 (4)
S10.73557 (6)0.76400 (5)0.611355 (17)0.03468 (11)
H10.395 (3)0.515 (3)0.4624 (5)0.038 (5)*
H3A0.061 (3)0.572 (3)0.5658 (7)0.045 (6)*
H3B0.116 (4)0.625 (3)0.5079 (7)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0325 (7)0.0309 (8)0.0295 (7)0.0004 (7)0.0009 (6)0.0016 (6)
C20.0398 (9)0.0396 (9)0.0384 (9)0.0066 (8)0.0043 (8)0.0004 (7)
C30.0336 (9)0.0477 (10)0.0586 (12)0.0060 (9)0.0010 (9)0.0108 (8)
C40.0412 (9)0.0459 (9)0.0472 (10)0.0100 (10)0.0114 (8)0.0155 (8)
C50.0532 (11)0.0513 (11)0.0297 (8)0.0059 (9)0.0067 (8)0.0004 (8)
C60.0389 (9)0.0438 (9)0.0332 (8)0.0034 (8)0.0009 (7)0.0036 (7)
C70.0570 (13)0.0796 (17)0.0726 (16)0.0192 (15)0.0322 (12)0.0239 (15)
C80.0359 (9)0.0302 (8)0.0445 (9)0.0041 (7)0.0001 (7)0.0047 (7)
C90.0309 (8)0.0293 (7)0.0316 (7)0.0009 (6)0.0008 (6)0.0014 (6)
C100.0363 (9)0.0351 (8)0.0467 (10)0.0047 (7)0.0060 (8)0.0020 (7)
C110.0627 (13)0.0521 (11)0.0332 (9)0.0030 (11)0.0058 (9)0.0066 (8)
N10.0319 (7)0.0340 (7)0.0308 (7)0.0033 (6)0.0019 (6)0.0013 (5)
N20.0363 (7)0.0334 (7)0.0324 (7)0.0006 (6)0.0000 (6)0.0017 (6)
N30.0337 (8)0.0569 (11)0.0403 (8)0.0115 (8)0.0074 (7)0.0066 (8)
O10.0643 (9)0.0496 (8)0.0302 (6)0.0154 (7)0.0044 (6)0.0034 (6)
O20.0428 (8)0.0538 (8)0.0566 (9)0.0138 (7)0.0147 (7)0.0062 (7)
O30.0536 (8)0.0428 (7)0.0423 (7)0.0149 (6)0.0040 (6)0.0015 (6)
O40.0444 (8)0.0545 (8)0.0649 (10)0.0167 (7)0.0172 (7)0.0022 (7)
S10.0365 (2)0.0351 (2)0.03242 (18)0.00248 (17)0.00560 (16)0.00011 (15)
Geometric parameters (Å, º) top
C1—C61.379 (2)C8—C101.505 (3)
C1—C21.388 (3)C9—N31.305 (2)
C1—S11.7655 (16)C9—N21.322 (2)
C2—C31.378 (3)C9—N11.356 (2)
C2—H20.9300C10—N21.455 (2)
C3—C41.390 (3)C10—H10A0.9700
C3—H30.9300C10—H10B0.9700
C4—C51.386 (3)C11—N21.448 (2)
C4—C71.508 (3)C11—H11A0.9600
C5—C61.394 (3)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—H60.9300N1—H10.872 (9)
C7—H7A0.9600N3—H3A0.885 (9)
C7—H7B0.9600N3—H3B0.882 (10)
C7—H7C0.9600O1—S11.4523 (14)
C8—O41.206 (2)O2—S11.4510 (15)
C8—N11.374 (2)O3—S11.4559 (13)
C6—C1—C2120.22 (16)N2—C9—N1110.85 (15)
C6—C1—S1120.55 (13)N2—C10—C8102.59 (14)
C2—C1—S1119.22 (13)N2—C10—H10A111.2
C3—C2—C1119.54 (18)C8—C10—H10A111.2
C3—C2—H2120.2N2—C10—H10B111.2
C1—C2—H2120.2C8—C10—H10B111.2
C2—C3—C4121.36 (19)H10A—C10—H10B109.2
C2—C3—H3119.3N2—C11—H11A109.5
C4—C3—H3119.3N2—C11—H11B109.5
C5—C4—C3118.41 (17)H11A—C11—H11B109.5
C5—C4—C7120.9 (2)N2—C11—H11C109.5
C3—C4—C7120.7 (2)H11A—C11—H11C109.5
C4—C5—C6120.83 (18)H11B—C11—H11C109.5
C4—C5—H5119.6C9—N1—C8110.61 (15)
C6—C5—H5119.6C9—N1—H1124.5 (15)
C1—C6—C5119.63 (18)C8—N1—H1124.7 (15)
C1—C6—H6120.2C9—N2—C11124.78 (17)
C5—C6—H6120.2C9—N2—C10109.78 (14)
C4—C7—H7A109.5C11—N2—C10124.02 (16)
C4—C7—H7B109.5C9—N3—H3A124.1 (15)
H7A—C7—H7B109.5C9—N3—H3B116.8 (18)
C4—C7—H7C109.5H3A—N3—H3B118 (2)
H7A—C7—H7C109.5O2—S1—O1112.60 (10)
H7B—C7—H7C109.5O2—S1—O3113.02 (10)
O4—C8—N1125.64 (19)O1—S1—O3111.04 (9)
O4—C8—C10128.43 (18)O2—S1—C1106.48 (8)
N1—C8—C10105.93 (16)O1—S1—C1106.04 (9)
N3—C9—N2126.45 (16)O3—S1—C1107.14 (8)
N3—C9—N1122.70 (16)
C6—C1—C2—C30.3 (3)O4—C8—N1—C9176.92 (19)
S1—C1—C2—C3179.74 (15)C10—C8—N1—C93.4 (2)
C1—C2—C3—C40.3 (3)N3—C9—N2—C119.9 (3)
C2—C3—C4—C50.3 (3)N1—C9—N2—C11169.69 (16)
C2—C3—C4—C7179.9 (2)N3—C9—N2—C10176.69 (18)
C3—C4—C5—C60.7 (3)N1—C9—N2—C102.86 (19)
C7—C4—C5—C6179.5 (2)C8—C10—N2—C94.62 (19)
C2—C1—C6—C50.1 (3)C8—C10—N2—C11171.58 (17)
S1—C1—C6—C5179.85 (15)C6—C1—S1—O216.90 (18)
C4—C5—C6—C10.6 (3)C2—C1—S1—O2163.02 (15)
O4—C8—C10—N2175.6 (2)C6—C1—S1—O1137.03 (16)
N1—C8—C10—N24.70 (19)C2—C1—S1—O142.88 (17)
N3—C9—N1—C8179.99 (17)C6—C1—S1—O3104.31 (16)
N2—C9—N1—C80.4 (2)C2—C1—S1—O375.78 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.89 (1)2.09 (1)2.967 (2)171 (2)
N1—H1···O3ii0.87 (1)1.94 (1)2.811 (2)173 (2)
N3—H3B···O1ii0.88 (1)1.96 (1)2.813 (2)163 (2)
C10—H10B···O20.972.593.463 (3)150
C11—H11C···Cg10.962.783.537 (2)136
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+1.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95–o97.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoghimi, A., Sharif, M. A. & Aghabozorg, H. (2004). Acta Cryst. E60, o1790–o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119–1126.  CAS PubMed Web of Science Google Scholar
First citationSharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. & Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971–2977.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o1448–o1449.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds