organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N′-(Ethane-1,2-di­yl)bis­­(2-chloro­benzamide)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Bharathi Women's College, Chennai-108, Tamilnadu, India, bDepartment of Chemistry, Madras Christian College, Chennai-59, Tamilnadu, India, and cPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 June 2016; accepted 21 July 2016; online 26 July 2016)

The title compound, C16H14Cl2N2O2, crystallized with one half-mol­ecule in the asymmetric unit; the whole mol­ecule is generated by inversion symmetry, the center of inversion being situated at the middle of the bridging –CH2—CH2– bond. The dihedral angle between the amide group and the benzene ring is 52.4 (2)°. In the crystal, mol­ecules are linked by two pairs of N—H⋯O hydrogen bonds forming a ladder-like structure propagating along the a-axis direction and enclosing R22(14) ring motifs. The compound was refined as a two-component twin [BASF = 0.18 (1)].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ethyl­enedi­amine, having two amines, is bifunctional and readily forms heterocycles such as imidazolidines. It is also widely used as a precursor to form various polymers (Wang et al., 2013[Wang, C.-K., Hou, C.-W. & Wei, Y.-X. (2013). Sustain. Environ. Res. 23, 413-420.]). It is an ingredient in the common bronchodilator drug amino­phylline, where it serves to solubilize the active ingredient theophylline. It has also been used in dermatologic preparations (Hogan, 1990[Hogan, D. J. (1990). Dermatol. Clin. 8, 133-136.]). Ethyl­enedi­amine is one of the most frequent contact sensitizers (Zuidema, 1985[Zuidema, J. (1985). Pharm. World Sci. 7, 134-140.]). It is used as a solvent, miscible with water, oxygenated and aromatic solvents (Ashford, 1994[Ashford, R. D. (1994). Ashford's Dictionary of Industrial Chemicals, p. 395. London: Wavelength Publications Ltd.]). Ethyl­enedi­amine di­hydro­iodide (EDDI) has been added to animal feeds as a source of iodide (Lyday, 2000[Lyday, P. A. (2000). Ullmann's Encyclopedia of Industrial Chemistry, Vol. A14, pp. 382-390. New York: VCH.]). N-substituted benzamides are well known anti­cancer compounds (Olsson et al., 2002[Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971-978.]), they exhibit potent anti-emetic activity (Vega-Noverola et al., 1989[Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.]) and inhibit the activity of nuclear factor-B and the nuclear factor of activated T cells while inducing activator protein 1 activity in T-lymphocytes (Lindgren et al., 2001[Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267-277.]). In view of this inter­est we have synthesized the title compound and describe herein its crystal structure.

The bond lengths and bond angles in the title compound, Fig. 1[link], are close to those observed for similar compounds, for example in N,N′-ethane-1,2-diylbis(4-meth­oxy­benzamide) (Aparicio et al., 2014[Aparicio, F., Matesanz, E. & Sánchez, L. (2014). Chem. Eur. J. 20, 14599-14603.]), 4,4′-(ethane-1,2-diyldicarbamo­yl)di­benzoic acid (Guarda et al., 2012[Guarda, L., Parra, N., Chavez, M. S., Belmar, J., Jimenez, C. A., Pasan, J. & Ruiz-Perez, C. (2012). J. Chil. Chem. Soc. 57, 1305-1308.]) and 1,2-bis­[(2-amino­benzo­yl)amino]­ethane (Bertolasi et al., 2009[Bertolasi, V., Hunter, N. & Vaughan, K. (2009). J. Chem. Crystallogr. 39, 372-376.]). In the title compound, the dihedral angle between the amide group (O1/N1/C2/C3) and the benzene ring (C3–C8) is 52.4 (2)°. In the above mentioned compounds, this dihedral angle is ca 25.9, 27.5 and 30.6°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling [symmetry code: (a) −x + 1, −y, −z + 1]. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, mol­ecules are linked by two pairs of N—H⋯O hydrogen bonds, forming a ladder-like structure propagating along the a-axis direction and enclosing R22(14) loops (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (5) 1.99 (5) 2.801 (4) 149 (4)
Symmetry code: (i) x+1, y, z.
[Figure 2]
Figure 2
A partial view along the b axis of the crystal packing of the title compound. The dashed lines indicate the hydrogen bonds (see Table 1[link]). For clarity only the H atoms involved in interactions have been included.

Synthesis and crystallization

The title compound was synthesized following a published procedure (Revathi et al., 2015[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359-o360.]). In a 250 ml round-bottomed flask, 25ml of ethyl­methyl­ketone was added to ethyl­enedi­amine (0.01mol) and stirred at room temperature. After 10 min, tri­ethyl­amine (0.04 mol) was added and the mixture was stirred for 15 min. 2-Chloro­benzoyl chloride (0.04 mol) was then added and the reaction mixture was stirred at room temperature for 2 h. The precipitate that formed was filtered off and the filtrate evaporated to give crude title product. It was recrystallized twice from ethyl­methyl­ketone to give yellow block-like crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The compound was refined as a two-component twin [BASF = 0.18 (1)].

Table 2
Experimental details

Crystal data
Chemical formula C16H14Cl2N2O2
Mr 337.19
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 4.9667 (6), 23.701 (3), 7.1113 (8)
β (°) 104.189 (4)
V3) 811.59 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.885, 0.922
No. of measured, independent and observed [I > 2σ(I)] reflections 11558, 1429, 1429
Rint 0.061
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.156, 1.17
No. of reflections 11558
No. of parameters 105
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.32
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

N,N'-(Ethane-1,2-diyl)bis(2-chlorobenzamide) top
Crystal data top
C16H14Cl2N2O2F(000) = 348
Mr = 337.19Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.9667 (6) ÅCell parameters from 6198 reflections
b = 23.701 (3) Åθ = 2.6–29.3°
c = 7.1113 (8) ŵ = 0.41 mm1
β = 104.189 (4)°T = 293 K
V = 811.59 (17) Å3Block, yellow
Z = 20.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1429 independent reflections
Radiation source: fine-focus sealed tube1429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω and φ scanθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 55
Tmin = 0.885, Tmax = 0.922k = 2828
11558 measured reflectionsl = 88
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + 1.3152P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
11558 reflectionsΔρmax = 0.40 e Å3
105 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5857 (8)0.00874 (16)0.5990 (6)0.0425 (11)
H1A0.48430.03670.65360.051*
H1B0.75740.02590.58550.051*
C20.4659 (8)0.06093 (16)0.8173 (6)0.0365 (10)
C30.5714 (8)0.10688 (16)0.9594 (6)0.0371 (10)
C40.8101 (9)0.09869 (18)1.1056 (7)0.0508 (12)
H40.90880.06521.10890.061*
C50.9046 (11)0.1387 (2)1.2456 (7)0.0681 (15)
H51.06350.13211.34390.082*
C60.7609 (13)0.1887 (2)1.2385 (9)0.0773 (17)
H60.82350.21601.33310.093*
C70.5285 (12)0.1986 (2)1.0949 (9)0.0700 (16)
H70.43390.23271.09040.084*
C80.4345 (9)0.15789 (17)0.9560 (7)0.0475 (11)
N10.6494 (7)0.03913 (15)0.7298 (5)0.0407 (9)
O10.2278 (6)0.04316 (12)0.7882 (5)0.0564 (9)
Cl10.1434 (3)0.17296 (5)0.7711 (2)0.0786 (6)
H10.822 (10)0.0537 (18)0.761 (7)0.069 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.046 (2)0.048 (3)0.0037 (19)0.0094 (19)0.013 (2)
C20.026 (2)0.043 (2)0.041 (3)0.0015 (17)0.0086 (19)0.0049 (19)
C30.033 (2)0.039 (2)0.044 (3)0.0043 (18)0.018 (2)0.0056 (19)
C40.045 (3)0.050 (3)0.054 (3)0.001 (2)0.006 (2)0.008 (2)
C50.067 (4)0.071 (4)0.056 (4)0.015 (3)0.004 (3)0.018 (3)
C60.088 (4)0.059 (4)0.081 (5)0.024 (3)0.014 (4)0.037 (3)
C70.086 (4)0.042 (3)0.085 (5)0.002 (3)0.028 (4)0.016 (3)
C80.052 (3)0.041 (2)0.050 (3)0.000 (2)0.015 (2)0.001 (2)
N10.0215 (18)0.056 (2)0.045 (2)0.0040 (16)0.0076 (16)0.0165 (17)
O10.0235 (16)0.0612 (19)0.089 (3)0.0107 (14)0.0222 (16)0.0276 (17)
Cl10.0734 (10)0.0652 (9)0.0913 (12)0.0220 (7)0.0088 (8)0.0099 (8)
Geometric parameters (Å, º) top
C1—N11.452 (5)C4—H40.9300
C1—C1i1.513 (8)C5—C61.379 (7)
C1—H1A0.9700C5—H50.9300
C1—H1B0.9700C6—C71.362 (8)
C2—O11.224 (4)C6—H60.9300
C2—N11.328 (5)C7—C81.378 (6)
C2—C31.490 (5)C7—H70.9300
C3—C81.384 (5)C8—Cl11.736 (5)
C3—C41.386 (6)N1—H10.90 (5)
C4—C51.371 (6)
N1—C1—C1i111.5 (4)C4—C5—C6119.1 (5)
N1—C1—H1A109.3C4—C5—H5120.5
C1i—C1—H1A109.3C6—C5—H5120.5
N1—C1—H1B109.3C7—C6—C5120.8 (5)
C1i—C1—H1B109.3C7—C6—H6119.6
H1A—C1—H1B108.0C5—C6—H6119.6
O1—C2—N1122.2 (4)C6—C7—C8119.5 (5)
O1—C2—C3122.0 (3)C6—C7—H7120.3
N1—C2—C3115.7 (3)C8—C7—H7120.3
C8—C3—C4117.5 (4)C7—C8—C3121.4 (5)
C8—C3—C2122.5 (4)C7—C8—Cl1118.1 (4)
C4—C3—C2120.0 (4)C3—C8—Cl1120.5 (3)
C5—C4—C3121.7 (4)C2—N1—C1122.5 (3)
C5—C4—H4119.1C2—N1—H1117 (3)
C3—C4—H4119.1C1—N1—H1120 (3)
O1—C2—C3—C852.3 (6)C6—C7—C8—C30.0 (8)
N1—C2—C3—C8130.1 (4)C6—C7—C8—Cl1178.1 (4)
O1—C2—C3—C4125.5 (5)C4—C3—C8—C71.2 (6)
N1—C2—C3—C452.1 (5)C2—C3—C8—C7176.7 (4)
C8—C3—C4—C51.8 (7)C4—C3—C8—Cl1176.9 (3)
C2—C3—C4—C5176.2 (4)C2—C3—C8—Cl15.2 (5)
C3—C4—C5—C61.1 (7)O1—C2—N1—C12.5 (6)
C4—C5—C6—C70.1 (8)C3—C2—N1—C1175.2 (4)
C5—C6—C7—C80.7 (8)C1i—C1—N1—C278.1 (6)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.90 (5)1.99 (5)2.801 (4)149 (4)
Symmetry code: (ii) x+1, y, z.
 

Acknowledgements

We are grateful to the Central Instrumentation Facility, Queen Mary's College, Chennai-4, for computing facilities and the SAIF, IIT, Madras, for use of the X-ray data-collection facility.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAparicio, F., Matesanz, E. & Sánchez, L. (2014). Chem. Eur. J. 20, 14599–14603.  CSD CrossRef CAS PubMed Google Scholar
First citationAshford, R. D. (1994). Ashford's Dictionary of Industrial Chemicals, p. 395. London: Wavelength Publications Ltd.  Google Scholar
First citationBertolasi, V., Hunter, N. & Vaughan, K. (2009). J. Chem. Crystallogr. 39, 372–376.  CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuarda, L., Parra, N., Chavez, M. S., Belmar, J., Jimenez, C. A., Pasan, J. & Ruiz-Perez, C. (2012). J. Chil. Chem. Soc. 57, 1305–1308.  CSD CrossRef CAS Google Scholar
First citationHogan, D. J. (1990). Dermatol. Clin. 8, 133–136.  CAS PubMed Google Scholar
First citationLindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267–277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLyday, P. A. (2000). Ullmann's Encyclopedia of Industrial Chemistry, Vol. A14, pp. 382–390. New York: VCH.  Google Scholar
First citationOlsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359–o360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.  Google Scholar
First citationWang, C.-K., Hou, C.-W. & Wei, Y.-X. (2013). Sustain. Environ. Res. 23, 413–420.  CAS Google Scholar
First citationZuidema, J. (1985). Pharm. World Sci. 7, 134–140.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds