organic compounds
1,1-Difluoro-3-phenyl-9-(pyridin-2-yl)-1H-1λ4,11λ4-1,3,5,2-oxadiazaborinino[3,4-a][1,8]naphthyridine
aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
*Correspondence e-mail: chishaoming@gmail.com
In the title compound, C20H13BF2N4O, the central fused three-ring oxadiazaborininonaphthyridine system is planar (r.m.s. deviation of 0.03 Å). The phenyl ring lies in the plane of this ring system, making a dihedral angle of 0.61 (14)°, and is inclined to the pyridine ring by 9.02 (19)°. In the crystal, molecules are connected by C—H⋯F hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by offset π–π interactions [intercentroid distance = 3.4550 (13) Å], forming a three-dimensional supramolecular architecture.
Keywords: crystal structure; 1,8-naphthyridine derivative; BF2 complexes; hydrogen bonding; offset π–π interactions.
CCDC reference: 1492104
Structure description
Over the past decade, BF2 complexes have been known to be fluorescent dyes with high fluorescence quantum yields (Zheng et al., 2015), sharp fluorescence peaks (Du et al., 2014), high extinction coefficients (Kubota et al., 2010) and high chemical stability (Li et al., 2010). They are widely applied as sensors (Gonçalves, 2009; Kobayashi et al., 2010; Tachikawa et al., 2010), photodynamic therapy agents (Lovell et al., 2010; Ozlem & Akkaya, 2009), photo-electric materials (Gomez-Duran et al., 2010; Lovell et al., 2010; Ortiz et al., 2010; Ozlem & Akkaya, 2008) and light-harvesting materials (Erten-Ela et al., 2008; Rousseau et al., 2009). 1,8-Naphthyridines have attracted interest due to their diverse coordination modes and have been used as ion probes (Liu et al., 2014), as luminescent materials (Li et al., 2014) and in biochemistry (Zhao et al., 2014). The above observations prompted us to synthesize the title compound, which is a novel BF2 complex based on a 1,8-naphthyridine derivative, and we report herein on its crystal structure.
The molecular structure of the title compound is shown in Fig. 1. It contains naphthyridine, pyridyl and phenyl rings. The naphthyridine ring system is fused with a difluororoxadiazaborinino unit. The fused oxadiazaborininonaphthyridine ring system is planar (r.m.s. deviation of 0.03 Å). The phenyl ring (C1–C6) lies in the plane of this ring system, making a dihedral angle of 0.61 (14)°, and is inclined to the pyridine ring (N4/C16–C20) by 9.02 (19)°.
In the crystal, molecules are linked by C—H⋯F hydrogen bonds, forming chains along the b-axis direction (Fig. 2 and Table 1). The chains are linked via offset π–π interactions [Cg2⋯Cg5i = 3.519 (2) Å, interplanar distance = 3.4550 (13) Å, slippage = 0.629 Å; Cg2 and Cg5 are the centroids of rings N2/C8–C11/C15 and C1–C6, respectively; symmetry code: (i) x − , −y + , z − ], forming a three-dimensional supramolecular architecture (Fig. 3).
Owing to the shortage of BF2 complexes based on 1,8-naphthyridine derivatives, there are few examples of similar compounds in the literature. A search of the Cambridge Structural Database (Version 5.37, November 2015; Groom et al., 2016) revealed the structure of one very similar compound viz. 1,1-difluoro-7,9-dimethyl-3-phenyl-1H-[1,3,5,2]oxadiazaborinino-[3,4-a][1,8] naphthyridin-11-ium-1-uide (Wu et al., 2012).
Synthesis and crystallization
BF3·OEt2 (2 ml, 16 mmol) was added dropwise to an ice-cooled solution of 2,6-lutidine (1 ml) and N-[7-(pyridin-2-yl)-1,8-naphthyridin-2-yl]benzamide (0.326 g,1 mmol) in anhydrous CH2Cl2 (80 ml) under a nitrogen atmosphere. After the mixture was stirred for 24 h at room temperature, the reaction was quenched by 20 ml distilled water. The aqueous layer was extracted with CH2Cl2 (3 × 100 ml), the organic layer was dried with Na2SO4 and the solvent was removed under reduced pressure. The residue was purified by silica gel using CH2Cl2 as to give the pure product as a bright-yellow powder (yield 0.184 g, 50%). Crystals of the title compound were obtained from the CH2Cl2 solution by slow evaporation of the solvent at room temperature.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1492104
https://doi.org/10.1107/S2414314616011299/su4056sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616011299/su4056Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616011299/su4056Isup3.cml
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C20H13BF2N4O | F(000) = 768 |
Mr = 374.15 | Dx = 1.463 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3328 reflections |
a = 10.144 (2) Å | θ = 3.1–26.0° |
b = 16.276 (3) Å | µ = 0.11 mm−1 |
c = 10.491 (2) Å | T = 293 K |
β = 101.27 (3)° | Blcok, yellow |
V = 1698.8 (6) Å3 | 0.28 × 0.26 × 0.24 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 3328 independent reflections |
Radiation source: fine-focus sealed tube | 1795 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
ω scans | θmax = 26.0°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −12→12 |
Tmin = 0.970, Tmax = 0.975 | k = −20→20 |
14275 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.233 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1317P)2 + 0.0306P] where P = (Fo2 + 2Fc2)/3 |
3328 reflections | (Δ/σ)max < 0.001 |
253 parameters | Δρmax = 0.45 e Å−3 |
4 restraints | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
B1 | 0.3307 (4) | 0.1319 (2) | 0.8391 (4) | 0.0577 (10) | |
F1 | 0.27253 (19) | 0.09215 (12) | 0.9281 (2) | 0.0773 (7) | |
F2 | 0.3042 (2) | 0.09408 (11) | 0.7184 (2) | 0.0786 (7) | |
N1 | 0.5098 (3) | 0.27104 (16) | 0.9010 (3) | 0.0570 (7) | |
N2 | 0.2844 (3) | 0.22483 (15) | 0.8257 (2) | 0.0504 (7) | |
N3 | 0.0659 (3) | 0.17947 (15) | 0.7507 (3) | 0.0535 (7) | |
N4 | −0.0920 (3) | 0.0434 (2) | 0.6740 (4) | 0.0949 (12) | |
O1 | 0.4774 (2) | 0.13081 (12) | 0.8848 (3) | 0.0672 (7) | |
C1 | 0.7405 (3) | 0.0970 (2) | 0.9777 (4) | 0.0613 (9) | |
H1 | 0.6790 | 0.0543 | 0.9577 | 0.074* | |
C2 | 0.8750 (4) | 0.0794 (2) | 1.0225 (4) | 0.0719 (11) | |
H2 | 0.9042 | 0.0252 | 1.0326 | 0.086* | |
C3 | 0.9666 (4) | 0.1439 (3) | 1.0526 (4) | 0.0727 (11) | |
H3 | 1.0572 | 0.1324 | 1.0819 | 0.087* | |
C4 | 0.9246 (4) | 0.2231 (3) | 1.0396 (4) | 0.0715 (11) | |
H4 | 0.9865 | 0.2655 | 1.0605 | 0.086* | |
C5 | 0.7901 (3) | 0.2411 (2) | 0.9953 (3) | 0.0621 (9) | |
H5 | 0.7618 | 0.2955 | 0.9876 | 0.075* | |
C6 | 0.6967 (3) | 0.17794 (19) | 0.9622 (3) | 0.0531 (8) | |
C7 | 0.5527 (3) | 0.19527 (19) | 0.9122 (3) | 0.0552 (8) | |
C8 | 0.3758 (4) | 0.28545 (19) | 0.8567 (3) | 0.0549 (8) | |
C9 | 0.3336 (4) | 0.36894 (19) | 0.8446 (4) | 0.0636 (9) | |
H9 | 0.3962 | 0.4106 | 0.8687 | 0.076* | |
C10 | 0.2031 (4) | 0.3884 (2) | 0.7983 (3) | 0.0640 (10) | |
H10 | 0.1771 | 0.4432 | 0.7895 | 0.077* | |
C11 | 0.1074 (3) | 0.32651 (18) | 0.7638 (3) | 0.0546 (8) | |
C12 | −0.0303 (4) | 0.3392 (2) | 0.7114 (3) | 0.0659 (10) | |
H12 | −0.0628 | 0.3924 | 0.6957 | 0.079* | |
C13 | −0.1156 (4) | 0.2745 (2) | 0.6837 (3) | 0.0646 (10) | |
H13 | −0.2067 | 0.2828 | 0.6516 | 0.077* | |
C14 | −0.0629 (3) | 0.1947 (2) | 0.7048 (3) | 0.0563 (9) | |
C15 | 0.1487 (3) | 0.24382 (18) | 0.7802 (3) | 0.0496 (8) | |
C16 | −0.1497 (3) | 0.1216 (2) | 0.6737 (3) | 0.0572 (8) | |
C17 | −0.2834 (3) | 0.1330 (2) | 0.6458 (3) | 0.0524 (8) | |
H17 | −0.3203 | 0.1853 | 0.6456 | 0.063* | |
C18 | −0.3609 (4) | 0.0675 (3) | 0.6185 (4) | 0.0758 (11) | |
H18 | −0.4535 | 0.0753 | 0.6016 | 0.091* | |
C19 | −0.3142 (4) | −0.0101 (3) | 0.6137 (4) | 0.0780 (12) | |
H19 | −0.3731 | −0.0538 | 0.5910 | 0.094* | |
C20 | −0.1784 (4) | −0.0228 (2) | 0.6429 (5) | 0.0837 (12) | |
H20 | −0.1440 | −0.0757 | 0.6419 | 0.100* |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.057 (2) | 0.0370 (19) | 0.076 (3) | −0.0016 (17) | 0.004 (2) | −0.0001 (18) |
F1 | 0.0656 (13) | 0.0590 (12) | 0.1045 (17) | −0.0053 (10) | 0.0094 (12) | 0.0308 (11) |
F2 | 0.0820 (14) | 0.0531 (12) | 0.0938 (16) | 0.0081 (10) | 0.0004 (12) | −0.0231 (11) |
N1 | 0.0582 (17) | 0.0447 (15) | 0.0673 (18) | −0.0051 (13) | 0.0103 (14) | −0.0005 (13) |
N2 | 0.0567 (16) | 0.0411 (14) | 0.0544 (16) | −0.0004 (12) | 0.0133 (13) | 0.0007 (11) |
N3 | 0.0548 (16) | 0.0471 (16) | 0.0562 (17) | 0.0044 (13) | 0.0046 (13) | 0.0014 (12) |
N4 | 0.087 (2) | 0.0626 (16) | 0.127 (3) | 0.0002 (13) | 0.003 (2) | −0.010 (2) |
O1 | 0.0544 (14) | 0.0393 (12) | 0.1033 (19) | −0.0023 (10) | 0.0044 (13) | −0.0031 (12) |
C1 | 0.055 (2) | 0.057 (2) | 0.072 (2) | −0.0048 (16) | 0.0136 (17) | −0.0061 (17) |
C2 | 0.064 (2) | 0.069 (2) | 0.082 (3) | 0.0039 (19) | 0.013 (2) | 0.001 (2) |
C3 | 0.054 (2) | 0.088 (3) | 0.078 (3) | −0.003 (2) | 0.0167 (18) | 0.002 (2) |
C4 | 0.063 (2) | 0.079 (3) | 0.073 (3) | −0.023 (2) | 0.0134 (19) | −0.004 (2) |
C5 | 0.062 (2) | 0.058 (2) | 0.065 (2) | −0.0068 (17) | 0.0100 (17) | 0.0013 (17) |
C6 | 0.057 (2) | 0.0548 (19) | 0.0487 (19) | −0.0083 (16) | 0.0122 (15) | −0.0020 (15) |
C7 | 0.064 (2) | 0.0468 (18) | 0.055 (2) | −0.0083 (16) | 0.0139 (16) | −0.0018 (15) |
C8 | 0.072 (2) | 0.0411 (17) | 0.054 (2) | −0.0048 (16) | 0.0174 (17) | 0.0001 (14) |
C9 | 0.081 (2) | 0.0392 (17) | 0.074 (2) | −0.0091 (17) | 0.026 (2) | −0.0030 (16) |
C10 | 0.085 (3) | 0.0416 (17) | 0.070 (2) | 0.0082 (18) | 0.026 (2) | 0.0065 (16) |
C11 | 0.070 (2) | 0.0410 (17) | 0.054 (2) | 0.0042 (16) | 0.0153 (17) | 0.0020 (14) |
C12 | 0.079 (3) | 0.053 (2) | 0.067 (2) | 0.0212 (19) | 0.0168 (19) | 0.0050 (17) |
C13 | 0.064 (2) | 0.064 (2) | 0.064 (2) | 0.0207 (19) | 0.0080 (18) | 0.0035 (18) |
C14 | 0.062 (2) | 0.0571 (19) | 0.050 (2) | 0.0088 (17) | 0.0111 (16) | 0.0020 (15) |
C15 | 0.0597 (19) | 0.0423 (17) | 0.0487 (18) | 0.0033 (15) | 0.0153 (15) | 0.0007 (14) |
C16 | 0.0476 (13) | 0.0684 (17) | 0.0537 (19) | 0.0024 (15) | 0.0051 (14) | −0.0013 (16) |
C17 | 0.0486 (13) | 0.0595 (18) | 0.0468 (18) | 0.0159 (12) | 0.0034 (14) | −0.0014 (14) |
C18 | 0.053 (2) | 0.092 (3) | 0.078 (3) | −0.0055 (17) | 0.0013 (18) | −0.007 (2) |
C19 | 0.064 (3) | 0.078 (3) | 0.085 (3) | −0.011 (2) | −0.003 (2) | −0.001 (2) |
C20 | 0.072 (3) | 0.062 (2) | 0.110 (3) | 0.0032 (16) | 0.001 (2) | −0.001 (2) |
B1—F1 | 1.362 (5) | C3—C4 | 1.355 (6) |
B1—F2 | 1.386 (5) | C4—C5 | 1.384 (5) |
B1—O1 | 1.472 (5) | C5—C6 | 1.395 (4) |
B1—N2 | 1.582 (4) | C6—C7 | 1.480 (5) |
N1—C7 | 1.306 (4) | C8—C9 | 1.423 (5) |
N1—C8 | 1.368 (4) | C9—C10 | 1.356 (5) |
N2—C8 | 1.350 (4) | C10—C11 | 1.396 (5) |
N2—C15 | 1.400 (4) | C11—C15 | 1.410 (4) |
N3—C14 | 1.325 (4) | C11—C12 | 1.413 (5) |
N3—C15 | 1.341 (4) | C12—C13 | 1.358 (5) |
N4—C20 | 1.387 (5) | C13—C14 | 1.405 (5) |
N4—C16 | 1.400 (5) | C14—C16 | 1.478 (5) |
O1—C7 | 1.296 (4) | C16—C17 | 1.344 (4) |
C1—C2 | 1.383 (5) | C17—C18 | 1.322 (5) |
C1—C6 | 1.390 (5) | C18—C19 | 1.353 (5) |
C2—C3 | 1.396 (5) | C19—C20 | 1.367 (5) |
F1—B1—F2 | 112.6 (3) | N2—C8—N1 | 123.2 (3) |
F1—B1—O1 | 108.5 (3) | N2—C8—C9 | 119.7 (3) |
F2—B1—O1 | 107.2 (3) | N1—C8—C9 | 117.1 (3) |
F1—B1—N2 | 110.7 (3) | C10—C9—C8 | 120.7 (3) |
F2—B1—N2 | 110.0 (3) | C9—C10—C11 | 120.4 (3) |
O1—B1—N2 | 107.7 (3) | C10—C11—C15 | 118.8 (3) |
C7—N1—C8 | 119.0 (3) | C10—C11—C12 | 125.4 (3) |
C8—N2—C15 | 120.3 (3) | C15—C11—C12 | 115.8 (3) |
C8—N2—B1 | 120.0 (3) | C13—C12—C11 | 120.7 (3) |
C15—N2—B1 | 119.7 (3) | C12—C13—C14 | 118.5 (3) |
C14—N3—C15 | 117.8 (3) | N3—C14—C13 | 123.2 (3) |
C20—N4—C16 | 117.4 (3) | N3—C14—C16 | 115.6 (3) |
C7—O1—B1 | 125.2 (3) | C13—C14—C16 | 121.2 (3) |
C2—C1—C6 | 120.4 (3) | N3—C15—N2 | 115.9 (3) |
C1—C2—C3 | 119.4 (4) | N3—C15—C11 | 124.0 (3) |
C4—C3—C2 | 120.6 (4) | N2—C15—C11 | 120.1 (3) |
C3—C4—C5 | 120.3 (4) | C17—C16—N4 | 122.0 (3) |
C4—C5—C6 | 120.3 (3) | C17—C16—C14 | 118.0 (3) |
C1—C6—C5 | 118.9 (3) | N4—C16—C14 | 120.0 (3) |
C1—C6—C7 | 119.5 (3) | C18—C17—C16 | 117.9 (3) |
C5—C6—C7 | 121.5 (3) | C17—C18—C19 | 124.2 (4) |
O1—C7—N1 | 125.0 (3) | C18—C19—C20 | 118.5 (4) |
O1—C7—C6 | 115.0 (3) | C19—C20—N4 | 119.9 (4) |
N1—C7—C6 | 120.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···F2i | 0.93 | 2.47 | 3.353 (4) | 160 |
Symmetry code: (i) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
Support from the `Spring Sunshine' Plan of Ministry of Education of China (grant No. Z2011125) and the National Natural Science Foundation of China (grant No. 21262049).
References
Du, M. L., Hu, C. Y., Wang, L. F., Li, C., Han, Y. Y., Gan, X., Chen, Y., Mu, W. H., Huang, M. L. & Fu, W. F. (2014). Dalton Trans. 43, 13924–13931. Web of Science CSD CrossRef CAS PubMed Google Scholar
Erten-Ela, S., Yilmaz, M. D., Icli, B., Dede, Y., Icli, S. & Akkaya, E. U. (2008). Org. Lett. 10, 3299–3302. PubMed CAS Google Scholar
Gómez-Durán, C. F. A., García-Moreno, I., Costela, A., Martin, V., Sastre, R., Bañuelos, J., López Arbeloa, F., López Arbeloa, I. & Peña-Cabrera, E. (2010). Chem. Commun. 46, 5103–5105. Google Scholar
Gonçalves, M. S. T. (2009). Chem. Rev. 109, 190–212. PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kobayashi, H., Ogawa, M., Alford, R., Choyke, P. L. & Urano, Y. (2010). Chem. Rev. 110, 2620–2640. CrossRef CAS PubMed Google Scholar
Kubota, Y., Tsuzuki, T., Funabiki, K., Ebihara, M. & Matsui, M. (2010). Org. Lett. 12, 4010–4013. CSD CrossRef CAS PubMed Google Scholar
Li, H. J., Fu, W. F., Li, L., Gan, X., Mu, W. H., Chen, W. Q., Duan, X. M. & Song, H. B. (2010). Org. Lett. 12, 2924–2927. Web of Science CSD CrossRef CAS PubMed Google Scholar
Li, Z., Lv, X., Chen, Y. & Fu, W.-F. (2014). Dyes Pigments, 105, 157–162. CSD CrossRef CAS Google Scholar
Liu, X. J., Chen, M. X., Liu, Z. P., Yu, M. M., Wei, L. H. & Li, Z. X. (2014). Tetrahedron, 70, 658–663. Web of Science CSD CrossRef CAS Google Scholar
Lovell, J. F., Liu, T. W. B., Chen, J. & Zheng, G. (2010). Chem. Rev. 110, 2839–2857. CrossRef CAS PubMed Google Scholar
Ortiz, M. J., Garcia-Moreno, I., Agarrabeitia, A. R., Duran-Sampedro, G., Costela, A., Sastre, R., López Arbeloa, F., Bañuelos Prieto, J. & López Arbeloa, I. (2010). Phys. Chem. Chem. Phys. 12, 7804–7811. CrossRef CAS PubMed Google Scholar
Ozlem, S. & Akkaya, E. U. (2009). J. Am. Chem. Soc. 131, 48–49. CrossRef PubMed CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Rousseau, T., Cravino, A., Bura, T., Ulrich, G., Ziessel, R. & Roncali, J. (2009). J. Mater. Chem. 19, 2298–2300. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tachikawa, T., Wang, N., Yamashita, S., Cui, S.-C. & Majima, T. (2010). Angew. Chem. Int. Ed. 49, 8593–8597. CrossRef CAS Google Scholar
Wu, Y. Y., Chen, Y., Gou, G. Z., Mu, W. H., Lv, X. J., Du, M. L. & Fu, W. F. (2012). Org. Lett. 14, 5226–5229. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhao, X. Z., Smith, S. J., Métifiot, M., Marchand, C., Boyer, P. L., Pommier, Y., Hughes, S. H. & Burke, T. R. (2014). J. Med. Chem. 57, 6885–6885. CrossRef CAS Google Scholar
Zheng, J., Huang, F., Li, Y. J., Xu, T. W., Xu, H., Jia, J. H., Ye, Q. & Gao, J. R. (2015). Dyes Pigments, 113, 502–509. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.