metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)nickel(II) bis­­(perchlorate) hemihydrate

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: canderer@ac.uni-kiel.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 June 2016; accepted 21 June 2016; online 2 July 2016)

In the title compound, [Ni(C15H11N3)2](ClO4)2·0.5H2O, the Ni2+ cation is coordinated by two terpyridine ligands to form a discrete complex and the coordination polyhedron can be described as a slightly distorted octa­hedron. It crystallizes as a hemihydrate with two perchlorate anions to compensate the charges. In the crystal, one of the two crystallographically independent perchlorate anions is involved in O—H⋯O hydrogen bonding to the water mol­ecules, where two inversion-related water mol­ecules link two inversion-related perchlorate anions into a ring with an R42(12) loop. The O-atom position of the water mol­ecule is only half occupied, i.e. only half of the anions are involved in hydrogen bonding. A similar arrangement of two anions is also observed for the second crystallographically independent perchlorate anion but no water mol­ecules are located between the anions. The cationic complex and the perchlorate anions are additionally linked by a number of weak C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure. The crystal structure of the monohydrate of the same complex has been reported [Baker et al. (1995[Baker, A. T., Craig, D. C. & Rae, A. D. (1995). Aust. J. Chem. 48, 1373-1378.]). Aust. J. Chem. 48, 1373–1378].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Crystals of the title compound were obtained by the reaction of nickel perchlorate, terpyridine (terpy) and sodium tri­thio­anti­monate in H2O during the synthesis of new thio­anti­monates containing Ni2+ cations. The title complex, Fig. 1[link], consists of an Ni2+ cation coordinated by two terpyridine ligands, two perchlorate anions and half a water mol­ecule, all of them located in general positions. The Ni2+ coordination sphere can be described as an NiNN6 slightly distorted octa­hedron (Fig. 1[link]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 30% probability level.

In the crystal structure, one of the two crystallographically independent perchlorate anions is involved in O—H⋯O hydrogen bonding to the water mol­ecules, where two water mol­ecules link two perchlorate anions into a ring (Figs. 2[link] and 3[link], and Table 1[link]). The shortest inter­molecular O⋯O distances between the two anions within the ring is 5.273 (4) Å. It is noted that the oxygen position of the water mol­ecule is only half occupied, i.e. only half of the anions are involved in hydrogen bonding. A similar arrangement of two anions is also observed for the second crystallographically independent perchlorate anion but no water mol­ecules are located between the anions leading to a shorter inter­molecular distance (O⋯O distance ca 4.82 Å; see Fig. 3[link]). The cationic complex and the perchlorate anions are additionally linked by a number of weak C—H⋯O hydrogen bonds (Table 1[link]), that lead to the formation of a three-dimensional supra­molecular structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O21—H21A⋯O3 0.84 2.01 2.772 (5) 151
O21—H21B⋯O1i 0.84 2.08 2.845 (5) 150
C1—H1⋯O2 0.95 2.58 3.490 (4) 162
C2—H2⋯O4 0.95 2.59 3.292 (4) 131
C4—H4⋯O12ii 0.95 2.32 3.127 (3) 142
C9—H9⋯O13iii 0.95 2.53 3.417 (3) 155
C12—H12⋯O13iii 0.95 2.66 3.539 (3) 155
C15—H15⋯O3iv 0.95 2.45 3.265 (4) 144
C15—H15⋯O21iv 0.95 2.48 3.124 (5) 125
C21—H21⋯O11 0.95 2.52 3.255 (3) 134
C21—H21⋯O14 0.95 2.60 3.319 (4) 133
C24—H24⋯O2v 0.95 2.65 3.575 (4) 166
C32—H32⋯O1vi 0.95 2.39 3.243 (3) 149
C34—H34⋯O11vii 0.95 2.52 3.095 (3) 119
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y, -z+1; (vii) x, y-1, z.
[Figure 2]
Figure 2
A view of the hydrogen-bonded R42(12) loop involving the water mol­ecule and a perchlorate anion. Hydrogen bonds are shown as dashed lines (see Table 1[link]).
[Figure 3]
Figure 3
Crystal packing of the title compound, viewed along the a axis. Only the O—H⋯O hydrogen bonds are shown (dashed lines; see Table 1[link]), and the C-bound H atoms have been omitted for clarity.

The crystal structure of bis­(2,2′-terpyridine)­nickel(II) diperchlorate monohydrate in space group P21 (compared to P21/n for the title complex) has been reported by Baker et al. (1995[Baker, A. T., Craig, D. C. & Rae, A. D. (1995). Aust. J. Chem. 48, 1373-1378.]). The structure of the nickel nitrate complex of terpy (Calatayud et al., 2005[Calatayud, M. L., Sletten, J., Julve, M. & Castro, I. (2005). J. Mol. Struct. 741, 121-128.]) and the nickel penta­thio­nate complex of terpy (Freire et al., 2001[Freire, E., Baggio, S. & Baggio, R. (2001). Aust. J. Chem. 54, 131-134.]), have also been reported. McMurtrie & Dance (2010[McMurtrie, J. & Dance, I. (2010). CrystEngComm, 12, 2700-2710.]) have reported the structure of a nickel sulfate complex of terpy.

Synthesis and crystallization

Na3SbS3 was prepared by a reported procedure (Pompe & Pfitzner, 2013[Pompe, C. & Pfitzner, A. (2013). Z. Anorg. Allg. Chem. 639, 296-300.]). Ni(ClO4)2·6H2O (36.6 mg, 0.1 mmol), terpyridine (46.7 mg, 0.2 mmol) and Na3SbS3 (172.2 mg, 0.6 mmol) were reacted under solvothermal conditions in 2 ml H2O at 443 K for 26.5 h in an 11 ml glass tube. After cooling to room temperature, the solid was filtered off, washed with water and ethanol and dried over silica gel. The product consists of red block-like crystals and a grey powder of unknown identity.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The water position is not fully occupied, initially the occupancy factor was refined to be close to 0.5, and in the final cycles of refinement it was fixed at this value.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C15H11N3)2](ClO4)2·0.5H2O
Mr 733.15
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 8.7733 (2), 8.8342 (2), 39.4158 (10)
β (°) 94.150 (2)
V3) 3046.92 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.88
Crystal size (mm) 0.1 × 0.08 × 0.07
 
Data collection
Diffractometer Stoe IPDS2
No. of measured, independent and observed [I > 2σ(I)] reflections 31108, 5107, 4629
Rint 0.047
(sin θ/λ)max−1) 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.05
No. of reflections 5107
No. of parameters 436
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.35
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(2,2':6',2''-terpyridine-κ3N,N',N'')nickel(II) bis(perchlorate) hemihydrate top
Crystal data top
[Ni(C15H11N3)2](ClO4)2·0.5H2OF(000) = 1500
Mr = 733.15Dx = 1.598 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.7733 (2) ÅCell parameters from 31108 reflections
b = 8.8342 (2) Åθ = 1.0–24.6°
c = 39.4158 (10) ŵ = 0.88 mm1
β = 94.150 (2)°T = 150 K
V = 3046.92 (12) Å3Block, red
Z = 40.1 × 0.08 × 0.07 mm
Data collection top
Stoe IPDS-2
diffractometer
Rint = 0.047
ω scansθmax = 24.6°, θmin = 1.0°
31108 measured reflectionsh = 1010
5107 independent reflectionsk = 1010
4629 reflections with I > 2σ(I)l = 4646
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0634P)2 + 1.5903P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.41 e Å3
5107 reflectionsΔρmin = 0.35 e Å3
436 parametersExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0049 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.64470 (3)0.32729 (3)0.37211 (2)0.03402 (14)
N10.4214 (2)0.2406 (2)0.36311 (5)0.0367 (5)
N20.6094 (2)0.3488 (2)0.32166 (5)0.0366 (5)
N30.8557 (2)0.4161 (2)0.35825 (5)0.0377 (5)
C10.3333 (3)0.1807 (3)0.38621 (7)0.0405 (6)
H10.36710.18650.40960.049*
C20.1955 (3)0.1112 (3)0.37714 (7)0.0462 (6)
H20.13550.06970.39400.055*
C30.1470 (3)0.1030 (3)0.34324 (8)0.0510 (7)
H30.05290.05500.33640.061*
C40.2352 (3)0.1647 (3)0.31918 (7)0.0457 (6)
H40.20300.15940.29570.055*
C50.3716 (3)0.2343 (3)0.32991 (6)0.0387 (5)
C60.4745 (3)0.3055 (3)0.30633 (6)0.0387 (5)
C70.4415 (3)0.3280 (3)0.27179 (7)0.0460 (6)
H70.34570.29860.26110.055*
C80.5519 (3)0.3946 (3)0.25334 (7)0.0492 (6)
H80.53200.41070.22960.059*
C90.6910 (3)0.4380 (3)0.26923 (7)0.0455 (6)
H90.76700.48370.25670.055*
C100.7167 (3)0.4133 (3)0.30368 (6)0.0385 (5)
C110.8586 (3)0.4522 (3)0.32483 (6)0.0388 (5)
C120.9847 (3)0.5194 (3)0.31204 (7)0.0447 (6)
H120.98410.54490.28860.054*
C131.1117 (3)0.5490 (3)0.33388 (8)0.0499 (7)
H131.19910.59620.32570.060*
C141.1105 (3)0.5093 (3)0.36773 (7)0.0466 (6)
H141.19720.52740.38300.056*
C150.9805 (3)0.4427 (3)0.37890 (7)0.0410 (6)
H150.97990.41480.40220.049*
N210.5653 (2)0.5392 (2)0.38896 (5)0.0373 (5)
N220.6842 (2)0.3128 (2)0.42262 (5)0.0355 (4)
N230.7339 (2)0.1055 (2)0.37814 (5)0.0376 (5)
C210.5004 (3)0.6500 (3)0.36951 (7)0.0401 (6)
H210.49270.63770.34550.048*
C220.4445 (3)0.7810 (3)0.38307 (7)0.0461 (6)
H220.39870.85690.36860.055*
C230.4558 (3)0.8001 (3)0.41779 (8)0.0497 (7)
H230.41720.88910.42760.060*
C240.5246 (3)0.6873 (3)0.43832 (7)0.0457 (6)
H240.53510.69900.46230.055*
C250.5774 (3)0.5578 (3)0.42313 (6)0.0386 (5)
C260.6493 (3)0.4290 (3)0.44239 (6)0.0385 (5)
C270.6803 (3)0.4232 (3)0.47740 (7)0.0457 (6)
H270.65650.50640.49140.055*
C280.7466 (3)0.2937 (3)0.49150 (7)0.0489 (6)
H280.76770.28700.51540.059*
C290.7823 (3)0.1735 (3)0.47092 (7)0.0448 (6)
H290.82800.08420.48040.054*
C300.7498 (3)0.1868 (3)0.43622 (7)0.0385 (6)
C310.7804 (3)0.0699 (3)0.41065 (6)0.0378 (5)
C320.8504 (3)0.0664 (3)0.41903 (7)0.0440 (6)
H320.88370.08850.44200.053*
C330.8715 (3)0.1704 (3)0.39353 (8)0.0493 (7)
H330.92080.26420.39870.059*
C340.8201 (3)0.1362 (3)0.36048 (7)0.0460 (6)
H340.83120.20700.34270.055*
C350.7523 (3)0.0024 (3)0.35372 (7)0.0403 (6)
H350.71720.02590.33100.048*
Cl10.21251 (8)0.20342 (8)0.47263 (2)0.04847 (19)
O10.1600 (3)0.2159 (3)0.50604 (5)0.0631 (6)
O20.3705 (3)0.2339 (4)0.47414 (7)0.0918 (9)
O30.1348 (4)0.3097 (3)0.45068 (7)0.0924 (9)
O40.1820 (3)0.0561 (3)0.45948 (6)0.0825 (8)
Cl20.48296 (8)0.82419 (8)0.27874 (2)0.0496 (2)
O110.6161 (2)0.7635 (3)0.29712 (5)0.0585 (5)
O120.4709 (3)0.7648 (3)0.24492 (6)0.0734 (7)
O130.4980 (3)0.9858 (2)0.27707 (6)0.0628 (6)
O140.3498 (3)0.7874 (4)0.29620 (7)0.0866 (9)
O210.0023 (5)0.5946 (5)0.45066 (10)0.0582 (10)0.5
H21A0.04600.51560.45820.049 (17)*0.5
H21B0.01850.64060.46840.07 (2)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0341 (2)0.0325 (2)0.0354 (2)0.00023 (12)0.00246 (13)0.00065 (12)
N10.0369 (10)0.0337 (11)0.0396 (11)0.0023 (9)0.0036 (8)0.0005 (9)
N20.0376 (11)0.0320 (10)0.0407 (11)0.0006 (8)0.0053 (9)0.0008 (8)
N30.0371 (10)0.0336 (11)0.0427 (11)0.0018 (9)0.0045 (9)0.0002 (9)
C10.0405 (13)0.0373 (13)0.0439 (14)0.0008 (10)0.0058 (11)0.0009 (11)
C20.0388 (13)0.0462 (15)0.0546 (16)0.0018 (12)0.0104 (11)0.0004 (13)
C30.0361 (13)0.0532 (17)0.0635 (18)0.0058 (12)0.0033 (12)0.0048 (14)
C40.0400 (14)0.0490 (16)0.0474 (15)0.0003 (11)0.0013 (11)0.0031 (12)
C50.0357 (12)0.0365 (13)0.0436 (14)0.0025 (10)0.0011 (10)0.0006 (11)
C60.0387 (13)0.0357 (13)0.0414 (14)0.0024 (10)0.0011 (10)0.0016 (10)
C70.0491 (15)0.0470 (16)0.0407 (14)0.0033 (12)0.0043 (12)0.0016 (11)
C80.0591 (17)0.0502 (16)0.0382 (14)0.0047 (13)0.0017 (12)0.0033 (12)
C90.0516 (15)0.0457 (15)0.0402 (14)0.0019 (12)0.0102 (11)0.0045 (11)
C100.0400 (13)0.0335 (12)0.0425 (13)0.0024 (10)0.0061 (10)0.0005 (10)
C110.0420 (13)0.0311 (12)0.0440 (14)0.0024 (10)0.0076 (10)0.0005 (10)
C120.0467 (14)0.0404 (14)0.0484 (14)0.0030 (11)0.0130 (11)0.0022 (12)
C130.0436 (14)0.0426 (15)0.0653 (18)0.0052 (12)0.0163 (13)0.0034 (13)
C140.0374 (13)0.0431 (15)0.0594 (17)0.0023 (11)0.0036 (11)0.0054 (12)
C150.0388 (13)0.0373 (14)0.0468 (14)0.0017 (11)0.0021 (11)0.0023 (11)
N210.0366 (10)0.0354 (11)0.0401 (11)0.0023 (8)0.0045 (8)0.0009 (9)
N220.0341 (10)0.0323 (10)0.0403 (11)0.0006 (8)0.0038 (8)0.0001 (8)
N230.0353 (10)0.0361 (11)0.0414 (11)0.0021 (9)0.0023 (8)0.0002 (9)
C210.0385 (13)0.0379 (13)0.0439 (14)0.0006 (10)0.0024 (11)0.0051 (11)
C220.0441 (14)0.0358 (14)0.0582 (17)0.0043 (11)0.0019 (12)0.0046 (12)
C230.0521 (15)0.0382 (14)0.0590 (17)0.0051 (12)0.0063 (13)0.0046 (12)
C240.0475 (15)0.0430 (15)0.0469 (15)0.0000 (12)0.0060 (12)0.0038 (12)
C250.0378 (12)0.0356 (13)0.0426 (13)0.0017 (10)0.0050 (10)0.0009 (10)
C260.0363 (12)0.0379 (13)0.0416 (13)0.0036 (10)0.0046 (10)0.0007 (11)
C270.0501 (15)0.0466 (15)0.0403 (14)0.0015 (12)0.0035 (11)0.0035 (11)
C280.0516 (15)0.0566 (17)0.0380 (14)0.0006 (13)0.0007 (12)0.0038 (12)
C290.0491 (15)0.0432 (15)0.0418 (14)0.0030 (11)0.0020 (12)0.0066 (11)
C300.0353 (12)0.0374 (13)0.0428 (14)0.0029 (10)0.0032 (10)0.0025 (10)
C310.0348 (12)0.0344 (13)0.0442 (14)0.0024 (10)0.0032 (10)0.0003 (10)
C320.0412 (13)0.0394 (14)0.0510 (15)0.0009 (11)0.0004 (11)0.0062 (12)
C330.0459 (15)0.0358 (14)0.0654 (18)0.0050 (11)0.0009 (13)0.0005 (12)
C340.0420 (14)0.0385 (14)0.0573 (16)0.0003 (11)0.0038 (12)0.0079 (12)
C350.0375 (12)0.0382 (14)0.0450 (14)0.0021 (10)0.0023 (10)0.0038 (11)
Cl10.0498 (4)0.0530 (4)0.0425 (4)0.0029 (3)0.0024 (3)0.0012 (3)
O10.0762 (14)0.0714 (14)0.0434 (11)0.0017 (12)0.0152 (10)0.0032 (10)
O20.0523 (13)0.148 (3)0.0765 (17)0.0239 (16)0.0113 (12)0.0276 (18)
O30.121 (2)0.095 (2)0.0606 (15)0.0389 (17)0.0048 (15)0.0256 (14)
O40.123 (2)0.0598 (15)0.0651 (14)0.0260 (14)0.0079 (14)0.0111 (12)
Cl20.0536 (4)0.0471 (4)0.0472 (4)0.0079 (3)0.0026 (3)0.0082 (3)
O110.0604 (12)0.0606 (13)0.0524 (12)0.0031 (10)0.0095 (9)0.0025 (10)
O120.1052 (18)0.0608 (14)0.0502 (12)0.0133 (13)0.0219 (12)0.0002 (11)
O130.0817 (15)0.0422 (11)0.0671 (13)0.0034 (10)0.0240 (11)0.0037 (10)
O140.0584 (14)0.115 (2)0.0859 (18)0.0224 (14)0.0042 (12)0.0435 (16)
O210.072 (3)0.054 (3)0.048 (2)0.009 (2)0.002 (2)0.005 (2)
Geometric parameters (Å, º) top
Ni1—N21.999 (2)N22—C261.338 (3)
Ni1—N222.000 (2)N22—C301.347 (3)
Ni1—N12.110 (2)N23—C351.343 (3)
Ni1—N232.117 (2)N23—C311.353 (3)
Ni1—N32.119 (2)C21—C221.379 (4)
Ni1—N212.120 (2)C21—H210.9500
N1—C11.345 (3)C22—C231.375 (4)
N1—C51.350 (3)C22—H220.9500
N2—C61.345 (3)C23—C241.393 (4)
N2—C101.345 (3)C23—H230.9500
N3—C151.337 (3)C24—C251.387 (4)
N3—C111.357 (3)C24—H240.9500
C1—C21.379 (4)C25—C261.483 (4)
C1—H10.9500C26—C271.388 (4)
C2—C31.375 (4)C27—C281.382 (4)
C2—H20.9500C27—H270.9500
C3—C41.379 (4)C28—C291.386 (4)
C3—H30.9500C28—H280.9500
C4—C51.384 (4)C29—C301.382 (4)
C4—H40.9500C29—H290.9500
C5—C61.482 (4)C30—C311.481 (4)
C6—C71.385 (4)C31—C321.381 (4)
C7—C81.383 (4)C32—C331.384 (4)
C7—H70.9500C32—H320.9500
C8—C91.385 (4)C33—C341.381 (4)
C8—H80.9500C33—H330.9500
C9—C101.378 (4)C34—C351.379 (4)
C9—H90.9500C34—H340.9500
C10—C111.487 (4)C35—H350.9500
C11—C121.383 (4)Cl1—O21.409 (2)
C12—C131.383 (4)Cl1—O31.418 (2)
C12—H120.9500Cl1—O41.419 (2)
C13—C141.380 (4)Cl1—O11.430 (2)
C13—H130.9500Cl2—O121.429 (2)
C14—C151.383 (4)Cl2—O111.434 (2)
C14—H140.9500Cl2—O141.435 (2)
C15—H150.9500Cl2—O131.436 (2)
N21—C211.345 (3)O21—H21A0.8400
N21—C251.354 (3)O21—H21B0.8398
N2—Ni1—N22177.92 (8)C14—C15—H15118.7
N2—Ni1—N178.00 (8)C21—N21—C25118.6 (2)
N22—Ni1—N1103.66 (8)C21—N21—Ni1126.84 (17)
N2—Ni1—N23103.24 (8)C25—N21—Ni1114.52 (16)
N22—Ni1—N2378.06 (8)C26—N22—C30120.8 (2)
N1—Ni1—N2390.81 (8)C26—N22—Ni1120.04 (16)
N2—Ni1—N377.50 (8)C30—N22—Ni1119.17 (17)
N22—Ni1—N3100.87 (8)C35—N23—C31118.5 (2)
N1—Ni1—N3155.42 (8)C35—N23—Ni1127.55 (17)
N23—Ni1—N392.80 (8)C31—N23—Ni1113.88 (16)
N2—Ni1—N21101.35 (8)N21—C21—C22122.5 (2)
N22—Ni1—N2177.40 (8)N21—C21—H21118.7
N1—Ni1—N2192.94 (8)C22—C21—H21118.7
N23—Ni1—N21155.37 (8)C23—C22—C21119.1 (3)
N3—Ni1—N2193.82 (8)C23—C22—H22120.4
C1—N1—C5118.6 (2)C21—C22—H22120.4
C1—N1—Ni1126.96 (17)C22—C23—C24119.1 (3)
C5—N1—Ni1114.14 (16)C22—C23—H23120.4
C6—N2—C10120.7 (2)C24—C23—H23120.4
C6—N2—Ni1119.19 (17)C25—C24—C23118.9 (3)
C10—N2—Ni1120.03 (17)C25—C24—H24120.5
C15—N3—C11118.5 (2)C23—C24—H24120.5
C15—N3—Ni1126.92 (18)N21—C25—C24121.7 (2)
C11—N3—Ni1114.51 (16)N21—C25—C26114.6 (2)
N1—C1—C2122.4 (2)C24—C25—C26123.7 (2)
N1—C1—H1118.8N22—C26—C27121.0 (2)
C2—C1—H1118.8N22—C26—C25113.4 (2)
C3—C2—C1118.6 (2)C27—C26—C25125.6 (2)
C3—C2—H2120.7C28—C27—C26118.5 (3)
C1—C2—H2120.7C28—C27—H27120.8
C2—C3—C4119.9 (3)C26—C27—H27120.8
C2—C3—H3120.1C27—C28—C29120.4 (3)
C4—C3—H3120.1C27—C28—H28119.8
C3—C4—C5118.8 (3)C29—C28—H28119.8
C3—C4—H4120.6C30—C29—C28118.4 (2)
C5—C4—H4120.6C30—C29—H29120.8
N1—C5—C4121.7 (2)C28—C29—H29120.8
N1—C5—C6114.9 (2)N22—C30—C29121.1 (2)
C4—C5—C6123.3 (2)N22—C30—C31113.5 (2)
N2—C6—C7121.0 (2)C29—C30—C31125.4 (2)
N2—C6—C5113.3 (2)N23—C31—C32121.8 (2)
C7—C6—C5125.7 (2)N23—C31—C30115.2 (2)
C8—C7—C6118.3 (3)C32—C31—C30123.0 (2)
C8—C7—H7120.9C31—C32—C33119.1 (3)
C6—C7—H7120.9C31—C32—H32120.5
C7—C8—C9120.5 (3)C33—C32—H32120.5
C7—C8—H8119.8C34—C33—C32119.2 (2)
C9—C8—H8119.8C34—C33—H33120.4
C10—C9—C8118.6 (2)C32—C33—H33120.4
C10—C9—H9120.7C35—C34—C33118.9 (3)
C8—C9—H9120.7C35—C34—H34120.5
N2—C10—C9121.0 (2)C33—C34—H34120.5
N2—C10—C11113.1 (2)N23—C35—C34122.4 (2)
C9—C10—C11125.9 (2)N23—C35—H35118.8
N3—C11—C12121.7 (2)C34—C35—H35118.8
N3—C11—C10114.6 (2)O2—Cl1—O3109.1 (2)
C12—C11—C10123.7 (2)O2—Cl1—O4110.48 (19)
C13—C12—C11119.0 (3)O3—Cl1—O4108.34 (19)
C13—C12—H12120.5O2—Cl1—O1109.14 (15)
C11—C12—H12120.5O3—Cl1—O1109.75 (16)
C14—C13—C12119.4 (2)O4—Cl1—O1110.00 (15)
C14—C13—H13120.3O12—Cl2—O11109.68 (15)
C12—C13—H13120.3O12—Cl2—O14110.85 (17)
C13—C14—C15118.7 (3)O11—Cl2—O14109.55 (14)
C13—C14—H14120.7O12—Cl2—O13108.86 (14)
C15—C14—H14120.7O11—Cl2—O13108.73 (14)
N3—C15—C14122.6 (3)O14—Cl2—O13109.14 (17)
N3—C15—H15118.7H21A—O21—H21B103.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21A···O30.842.012.772 (5)151
O21—H21B···O1i0.842.082.845 (5)150
C1—H1···O20.952.583.490 (4)162
C2—H2···O40.952.593.292 (4)131
C4—H4···O12ii0.952.323.127 (3)142
C9—H9···O13iii0.952.533.417 (3)155
C12—H12···O13iii0.952.663.539 (3)155
C15—H15···O3iv0.952.453.265 (4)144
C15—H15···O21iv0.952.483.124 (5)125
C21—H21···O110.952.523.255 (3)134
C21—H21···O140.952.603.319 (4)133
C24—H24···O2v0.952.653.575 (4)166
C32—H32···O1vi0.952.393.243 (3)149
C34—H34···O11vii0.952.523.095 (3)119
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y, z+1; (vii) x, y1, z.
 

Acknowledgements

This work was supported by the State of Schleswig–Holstein.

References

First citationBaker, A. T., Craig, D. C. & Rae, A. D. (1995). Aust. J. Chem. 48, 1373–1378.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCalatayud, M. L., Sletten, J., Julve, M. & Castro, I. (2005). J. Mol. Struct. 741, 121–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationFreire, E., Baggio, S. & Baggio, R. (2001). Aust. J. Chem. 54, 131–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcMurtrie, J. & Dance, I. (2010). CrystEngComm, 12, 2700–2710.  Web of Science CSD CrossRef CAS Google Scholar
First citationPompe, C. & Pfitzner, A. (2013). Z. Anorg. Allg. Chem. 639, 296–300.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds