organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1H-Benzo[d]imidazol-3-ium (Z)-3-carboxyprop-2-enoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203 Tamil Nadu, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ppkpresidency@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 22 June 2016; accepted 24 June 2016; online 12 July 2016)

In the anion of the title molecular salt, C7H7N2+.C4H3O4, an O—H⋯O hydrogen bond generates an S(7) graph-set motif while a pair of inter­molecular N—H⋯O and C—H⋯O hydrogen bonds generate an R44(10) ring-motif. Adjacent anions and cations are further connected through N—H⋯O hydrogen bonds into infinite chains along [101] and these chains are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzimidazole derivatives exhibit various biological effects including anti­diabetic (Subudhi et al., 2007[Subudhi, B. B., Panda, P. K., Kundu, T., Sahoo, S. & Pradhan, D. (2007). J. Pharm. Res. 6, 114-118.]) and anti­microbial (El-masry et al., 2000[El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. H. (2000). Molecules, 5, 1429-1438.]) activity. Herewith we report the synthesis and crystal structure of the title compound whose geometric parameters are comparable to those found in similar structures (Amudha et al., 2015[Amudha, M., Kumar, P. P. & Chakkaravarthi, G. (2015). Acta Cryst. E71, o794-o795.]; Krishnamurthy et al., 2015[Krishnamurthy, M. S. & Begum, N. S. (2015). Acta Cryst. E71, o387-o388.]).

The asymmetric unit, Fig. 1[link], contains a 1H-benzo[d]imidazol-3-ium cation, protonated at the benzo­imidazole N2 atom, and a (Z)-carboxyprop-2-enoate anion with the OH group of one carb­oxy­lic acid deprotonated. The benzo­imidazole ring system is almost planar [r.m.s. deviation = 0.016 (2) Å from the best-fit mean plane]. In the anion, an O4—H4A⋯O2 hydrogen bond (Table 1[link]), generates an S(7) graph-set motif, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2 0.86 (2) 1.54 (2) 2.395 (2) 173 (2)
N1—H1⋯O3i 0.87 (1) 1.85 (1) 2.716 (2) 170 (2)
N1—H1⋯O4i 0.87 (1) 2.59 (2) 3.2215 (19) 130 (2)
N2—H2A⋯O1ii 0.87 (1) 1.89 (1) 2.761 (2) 173 (2)
N2—H2A⋯O2ii 0.87 (1) 2.58 (2) 3.2157 (19) 130 (2)
C7—H7⋯O1iii 0.93 2.29 3.193 (2) 164
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
The structure of the title salt, showing the atom labelling and 30% probability displacement ellipsoids.
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound, showing the ring-set motifs.

In the crystal, a pair of N2—H2A⋯O1 and C7—H7⋯O1 hydrogen bonds generate an R44(10) ring motif. Atom N2 acts as a bifurcated N—H⋯(O,O) donor, forming a very long N2—H2A⋯O2 hydrogen bond enclosing an R12(4) ring, Fig. 2[link] and Table 1[link]. In the crystal, adjacent anions and cations are connected through N—H⋯O hydrogen bonds (Table 1[link]) into infinite chains along [101]. These chains are further linked by C—H⋯O hydrogen bonds, forming a three-dimensional network, Fig. 3[link].

[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1[link]). With the exception of H7, C-bound H atoms have been omitted for clarity.

Synthesis and crystallization

Benzimidazole (6 g m) and maleic acid (5.88 g m) were taken in an equimolar ratio (1:1) and dissolved in water at room temperature. The resulting solution was stirred well for about six h using a magnetic stirrer and then the solution was filtered and allowed to evaporate at room temperature. Slow evaporation of the solvent yielded crystals suitable for X-ray diffraction analysis over 15 days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H7N2+·C4H3O4
Mr 234.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 12.8062 (18), 5.4759 (8), 15.840 (2)
β (°) 92.709 (4)
V3) 1109.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.968, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 14385, 2814, 1758
Rint 0.036
(sin θ/λ)max−1) 0.671
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.01
No. of reflections 2814
No. of parameters 165
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

1H-Benzo[d]imidazol-3-ium (Z)-3-carboxyprop-2-enoate top
Crystal data top
C7H7N2+·C4H3O4F(000) = 488
Mr = 234.21Dx = 1.402 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2814 reflections
a = 12.8062 (18) Åθ = 2.6–28.4°
b = 5.4759 (8) ŵ = 0.11 mm1
c = 15.840 (2) ÅT = 295 K
β = 92.709 (4)°Block, colourless
V = 1109.5 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2814 independent reflections
Radiation source: fine-focus sealed tube1758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and φ scansθmax = 28.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1717
Tmin = 0.968, Tmax = 0.979k = 77
14385 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.3092P]
where P = (Fo2 + 2Fc2)/3
2814 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.18 e Å3
3 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.80286 (14)0.4571 (3)0.63117 (10)0.0408 (4)
C20.74325 (18)0.2787 (4)0.66778 (12)0.0577 (5)
H20.77360.15410.70050.069*
C30.63754 (19)0.2955 (4)0.65332 (14)0.0698 (6)
H30.59460.17910.67670.084*
C40.59243 (16)0.4824 (4)0.60453 (15)0.0678 (6)
H40.52010.48620.59560.081*
C50.65108 (14)0.6604 (4)0.56929 (12)0.0539 (5)
H50.62050.78620.53740.065*
C60.75809 (12)0.6443 (3)0.58345 (10)0.0386 (4)
C70.92803 (14)0.6872 (4)0.58628 (11)0.0495 (5)
H70.99430.74800.57680.059*
C80.75802 (13)0.2061 (3)0.41264 (10)0.0407 (4)
C90.73360 (13)0.4304 (3)0.36290 (10)0.0404 (4)
H90.77340.56660.37850.048*
C100.66372 (13)0.4662 (3)0.29959 (11)0.0418 (4)
H100.66110.62470.27850.050*
C110.58908 (13)0.2933 (3)0.25709 (11)0.0427 (4)
N10.90930 (12)0.4909 (3)0.63094 (9)0.0487 (4)
N20.83986 (11)0.7854 (3)0.55688 (9)0.0446 (4)
O10.83660 (9)0.2067 (2)0.46103 (8)0.0498 (3)
O20.69760 (11)0.0217 (2)0.40536 (9)0.0652 (4)
O30.54288 (11)0.3592 (3)0.19178 (9)0.0649 (4)
O40.57443 (10)0.0823 (2)0.28870 (9)0.0587 (4)
H10.9574 (13)0.392 (3)0.6511 (14)0.081 (7)*
H2A0.8352 (15)0.913 (3)0.5238 (11)0.063 (6)*
H4A0.6146 (17)0.056 (5)0.3328 (11)0.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0504 (10)0.0373 (9)0.0346 (9)0.0001 (8)0.0026 (7)0.0051 (7)
C20.0855 (15)0.0431 (11)0.0456 (10)0.0063 (10)0.0129 (10)0.0011 (8)
C30.0801 (16)0.0646 (14)0.0670 (14)0.0266 (12)0.0281 (12)0.0085 (11)
C40.0453 (11)0.0846 (17)0.0745 (15)0.0131 (12)0.0149 (10)0.0164 (13)
C50.0436 (10)0.0602 (13)0.0578 (11)0.0035 (9)0.0019 (8)0.0036 (10)
C60.0414 (9)0.0356 (9)0.0388 (9)0.0016 (7)0.0017 (7)0.0042 (7)
C70.0417 (10)0.0541 (12)0.0519 (11)0.0044 (8)0.0062 (8)0.0003 (9)
C80.0468 (10)0.0352 (9)0.0399 (9)0.0012 (8)0.0016 (7)0.0030 (7)
C90.0476 (10)0.0280 (8)0.0454 (9)0.0105 (7)0.0011 (8)0.0021 (7)
C100.0491 (10)0.0271 (8)0.0491 (10)0.0059 (7)0.0011 (8)0.0024 (7)
C110.0416 (9)0.0373 (9)0.0488 (10)0.0016 (7)0.0016 (8)0.0027 (8)
N10.0494 (10)0.0488 (9)0.0466 (9)0.0067 (8)0.0104 (7)0.0028 (7)
N20.0439 (8)0.0397 (8)0.0495 (9)0.0034 (7)0.0041 (7)0.0066 (7)
O10.0499 (7)0.0509 (8)0.0478 (7)0.0009 (6)0.0066 (6)0.0001 (6)
O20.0779 (10)0.0358 (7)0.0795 (10)0.0180 (7)0.0221 (8)0.0195 (7)
O30.0719 (9)0.0587 (9)0.0617 (9)0.0106 (7)0.0233 (7)0.0066 (7)
O40.0590 (9)0.0393 (7)0.0759 (10)0.0154 (6)0.0191 (7)0.0058 (7)
Geometric parameters (Å, º) top
C1—N11.376 (2)C7—H70.9300
C1—C61.382 (2)C8—O11.2359 (19)
C1—C21.384 (3)C8—O21.274 (2)
C2—C31.365 (3)C8—C91.485 (2)
C2—H20.9300C9—C101.327 (2)
C3—C41.392 (3)C9—H90.9300
C3—H30.9300C10—C111.484 (2)
C4—C51.366 (3)C10—H100.9300
C4—H40.9300C11—O31.222 (2)
C5—C61.381 (2)C11—O41.277 (2)
C5—H50.9300N1—H10.871 (9)
C6—N21.383 (2)N2—H2A0.873 (9)
C7—N11.315 (2)O4—H4A0.860 (10)
C7—N21.316 (2)
N1—C1—C6106.51 (15)N2—C7—H7124.8
N1—C1—C2131.48 (17)O1—C8—O2122.11 (16)
C6—C1—C2122.01 (17)O1—C8—C9118.15 (15)
C3—C2—C1116.38 (19)O2—C8—C9119.73 (15)
C3—C2—H2121.8C10—C9—C8129.87 (15)
C1—C2—H2121.8C10—C9—H9115.1
C2—C3—C4121.7 (2)C8—C9—H9115.1
C2—C3—H3119.2C9—C10—C11130.20 (15)
C4—C3—H3119.2C9—C10—H10114.9
C5—C4—C3122.0 (2)C11—C10—H10114.9
C5—C4—H4119.0O3—C11—O4121.68 (16)
C3—C4—H4119.0O3—C11—C10118.12 (16)
C4—C5—C6116.65 (19)O4—C11—C10120.19 (15)
C4—C5—H5121.7C7—N1—C1108.51 (14)
C6—C5—H5121.7C7—N1—H1124.3 (15)
C5—C6—C1121.27 (17)C1—N1—H1126.8 (15)
C5—C6—N2132.43 (17)C7—N2—C6108.26 (15)
C1—C6—N2106.29 (14)C7—N2—H2A124.9 (13)
N1—C7—N2110.43 (16)C6—N2—H2A126.7 (13)
N1—C7—H7124.8C11—O4—H4A112.0 (17)
N1—C1—C2—C3178.05 (18)O1—C8—C9—C10169.98 (18)
C6—C1—C2—C30.8 (3)O2—C8—C9—C1011.0 (3)
C1—C2—C3—C40.1 (3)C8—C9—C10—C111.3 (3)
C2—C3—C4—C50.7 (3)C9—C10—C11—O3169.26 (18)
C3—C4—C5—C60.9 (3)C9—C10—C11—O410.8 (3)
C4—C5—C6—C10.2 (3)N2—C7—N1—C10.0 (2)
C4—C5—C6—N2178.47 (18)C6—C1—N1—C70.34 (19)
N1—C1—C6—C5178.42 (16)C2—C1—N1—C7179.36 (18)
C2—C1—C6—C50.7 (3)N1—C7—N2—C60.3 (2)
N1—C1—C6—N20.53 (18)C5—C6—N2—C7178.24 (19)
C2—C1—C6—N2179.66 (16)C1—C6—N2—C70.54 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O20.86 (2)1.54 (2)2.395 (2)173 (2)
N1—H1···O3i0.87 (1)1.85 (1)2.716 (2)170 (2)
N1—H1···O4i0.87 (1)2.59 (2)3.2215 (19)130 (2)
N2—H2A···O1ii0.87 (1)1.89 (1)2.761 (2)173 (2)
N2—H2A···O2ii0.87 (1)2.58 (2)3.2157 (19)130 (2)
C7—H7···O1iii0.932.293.193 (2)164
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+2, y+1, z+1.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAmudha, M., Kumar, P. P. & Chakkaravarthi, G. (2015). Acta Cryst. E71, o794–o795.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. H. (2000). Molecules, 5, 1429–1438.  CAS Google Scholar
First citationKrishnamurthy, M. S. & Begum, N. S. (2015). Acta Cryst. E71, o387–o388.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubudhi, B. B., Panda, P. K., Kundu, T., Sahoo, S. & Pradhan, D. (2007). J. Pharm. Res. 6, 114–118.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds