organic compounds
1-(4-Fluorophenyl)-4,4,6-trimethyl-3,4-dihydropyrimidine-2(1H)-thione
aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia, and bSchool of Chemistry, Faculty of Applied Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E., Malaysia
*Correspondence e-mail: hamiz410@salam.uitm.edu.my
In the title molecule, C13H15FN2S, the dihydropyrimidine ring is in a flattened boat conformation with deviations of 0.135 (2) and 0.371 (2) Å for the fluorophenyl-substituted N atom and the dimethyl-substituted C atom, respectively, from the four other essentially co-planar atoms. In the crystal, pairs of molecules related by twofold rotation axes are linked by N—H⋯S hydrogen bonds, forming dimers.
Keywords: crystal structure; 1-(4-fluorophenyl)-4,4,6-trimethyltetrahydropyrimidine-2(1H)-thione; tetrahydropyrimidine; twisted; envelope.
CCDC reference: 1495083
Structure description
The title compound is related to 4,4,6-trimethyl-1-phenyl-3,4- dihydropyrimidne-2-(1H)-thione (Yamin et al., 2005; Ismail et al., 2007), and isomeric to (S)-1-(3-fluorophenyl)-4,4,6-trimethyltetrahydropyrimidine-2(1H)-thione (Yamin et al., 2011) in which the dihydropyrimidine rings are in flattened sofa conformations. The dihydropyrimidine ring (N1/N2/C7–C10) in the title compound (Fig. 1) is in a flattened boat conformation with deviations of 0.135 (2) and 0.371 (2) Å for atoms N1 and C10, respectively, from the mean plane through atoms C7/C8/C9/N2. The benzene (C1–C6) and four planar atoms (C7/C8/C9/N2) of the dihydropyrimidine ring form a dihedral angle of 85.78 (13)°. The bond length and angles are in normal ranges and comparable to those in the above mentioned analogs. In the crystal, pairs of molecules related by twofold rotation axes are linked by N—H⋯S hydrogen bonds, forming dimers (Table 1 and Fig. 2).
Synthesis and crystallization
A procedure similar to that used for the preparation of 1-(3-fluorophenyl)-4,4,6-trimethyl-3,4-dihydropyrimidine-2(1H)-thione (Yamin et al., 2011) was followed. Equimolar quantities of thiocyanic acid and 4-fluoro-aniline (5.4 mmol) in acetone were stirred for 2–3 h. Colourless crystals of 78% yield were obtained after three days by evaporation at room temperature. Melting point 456.8–458.9 K. Analysis calculated for C13H15F1N2S1: C, 58.53; H, 5.67; N,10.50; S, 12.02%; found: C, 62.32; H, 5.99; F, 7.59; N, 11.19; S, 12.78, IR(KBr), v (cm−1) 1535 (C=S), 1591 (C=C), 3184 (N—H). 1H NMR (CDCl3, 400 MHz): δ 1.34 (6H, s, 2CH3), 1.49 (3H, s, CH3), 4.83 (1H, s, CH), 11.50 (1H, s, NH), 7.06–7.50 (C6H5 ring); 13C{1H}: δ 20.9 (CH3), 31.6 (2CH3), 52.4, 112.3, 132.4 (3Cquaternary), 128–130.1 (C6H5 ring) and 177.4 (C=S).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1495083
https://doi.org/10.1107/S2414314616011895/lh4008sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616011895/lh4008Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616011895/lh4008Isup3.cml
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C13H15FN2S | F(000) = 1056 |
Mr = 250.33 | Dx = 1.262 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9935 reflections |
a = 21.231 (3) Å | θ = 3.3–28.1° |
b = 10.8714 (14) Å | µ = 0.24 mm−1 |
c = 14.589 (4) Å | T = 303 K |
β = 128.524 (3)° | Block, colourless |
V = 2634.3 (8) Å3 | 0.47 × 0.46 × 0.19 mm |
Z = 8 |
Bruker SMART APEX CCD diffractometer | 2452 independent reflections |
Radiation source: fine-focus sealed tube | 2017 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
Detector resolution: 83.66 pixels mm-1 | θmax = 25.5°, θmin = 3.3° |
ω scans | h = −25→25 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | k = −13→13 |
Tmin = 0.897, Tmax = 0.956 | l = −17→17 |
35963 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0435P)2 + 2.1835P] where P = (Fo2 + 2Fc2)/3 |
2452 reflections | (Δ/σ)max = 0.001 |
158 parameters | Δρmax = 0.21 e Å−3 |
1 restraint | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.07442 (3) | 0.80412 (5) | 0.43577 (4) | 0.04451 (17) | |
N1 | −0.02089 (8) | 0.72028 (14) | 0.48345 (12) | 0.0373 (3) | |
N2 | −0.07352 (8) | 0.71633 (15) | 0.29028 (12) | 0.0420 (4) | |
F1 | 0.19803 (9) | 0.90181 (15) | 0.93207 (11) | 0.0869 (5) | |
C1 | 0.16002 (12) | 0.7460 (2) | 0.79555 (16) | 0.0543 (5) | |
H1A | 0.2064 | 0.7022 | 0.8522 | 0.065* | |
C2 | 0.14420 (13) | 0.8571 (2) | 0.82123 (16) | 0.0531 (5) | |
C3 | 0.07749 (13) | 0.92469 (19) | 0.74188 (18) | 0.0528 (5) | |
H3A | 0.0686 | 0.9998 | 0.7627 | 0.063* | |
C4 | 0.02300 (11) | 0.87899 (18) | 0.62920 (16) | 0.0447 (4) | |
H4A | −0.0231 | 0.9235 | 0.5730 | 0.054* | |
C5 | 0.03739 (10) | 0.76731 (16) | 0.60068 (14) | 0.0364 (4) | |
C6 | 0.10517 (12) | 0.70054 (18) | 0.68297 (16) | 0.0467 (5) | |
H6A | 0.1142 | 0.6250 | 0.6631 | 0.056* | |
C7 | −0.01163 (10) | 0.74492 (16) | 0.40060 (14) | 0.0338 (4) | |
C8 | −0.08797 (11) | 0.65017 (17) | 0.45490 (16) | 0.0431 (4) | |
C9 | −0.15077 (11) | 0.63413 (18) | 0.34358 (16) | 0.0455 (4) | |
H9A | −0.1926 | 0.5838 | 0.3253 | 0.055* | |
C10 | −0.15696 (10) | 0.69430 (17) | 0.24567 (15) | 0.0414 (4) | |
C11 | −0.19692 (13) | 0.6099 (2) | 0.13948 (17) | 0.0592 (6) | |
H11A | −0.1681 | 0.5335 | 0.1627 | 0.089* | |
H11B | −0.1963 | 0.6486 | 0.0809 | 0.089* | |
H11C | −0.2516 | 0.5945 | 0.1080 | 0.089* | |
C12 | −0.20189 (12) | 0.8167 (2) | 0.2106 (2) | 0.0599 (6) | |
H12A | −0.1762 | 0.8688 | 0.2782 | 0.090* | |
H12B | −0.2566 | 0.8020 | 0.1791 | 0.090* | |
H12C | −0.2011 | 0.8560 | 0.1524 | 0.090* | |
C13 | −0.07976 (15) | 0.5930 (2) | 0.55542 (19) | 0.0670 (7) | |
H13A | −0.1280 | 0.5485 | 0.5262 | 0.100* | |
H13B | −0.0713 | 0.6563 | 0.6079 | 0.100* | |
H13C | −0.0347 | 0.5376 | 0.5964 | 0.100* | |
H14A | −0.0688 (12) | 0.7351 (19) | 0.2377 (14) | 0.052 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0318 (2) | 0.0689 (3) | 0.0334 (3) | −0.0048 (2) | 0.0206 (2) | −0.0011 (2) |
N1 | 0.0375 (8) | 0.0477 (9) | 0.0288 (7) | −0.0032 (6) | 0.0216 (6) | −0.0019 (6) |
N2 | 0.0330 (8) | 0.0655 (10) | 0.0288 (7) | −0.0041 (7) | 0.0199 (7) | −0.0017 (7) |
F1 | 0.0906 (10) | 0.0940 (11) | 0.0403 (7) | −0.0210 (8) | 0.0233 (7) | −0.0230 (7) |
C1 | 0.0508 (12) | 0.0621 (13) | 0.0353 (10) | 0.0047 (10) | 0.0197 (9) | 0.0064 (9) |
C2 | 0.0574 (12) | 0.0620 (13) | 0.0343 (10) | −0.0166 (10) | 0.0257 (10) | −0.0112 (9) |
C3 | 0.0612 (13) | 0.0486 (11) | 0.0534 (12) | −0.0070 (10) | 0.0381 (11) | −0.0144 (9) |
C4 | 0.0450 (10) | 0.0464 (11) | 0.0439 (10) | 0.0026 (8) | 0.0283 (9) | −0.0017 (8) |
C5 | 0.0392 (9) | 0.0445 (10) | 0.0302 (8) | −0.0030 (7) | 0.0238 (8) | −0.0014 (7) |
C6 | 0.0520 (11) | 0.0482 (11) | 0.0388 (10) | 0.0062 (9) | 0.0277 (9) | 0.0000 (8) |
C7 | 0.0328 (8) | 0.0401 (9) | 0.0294 (8) | 0.0041 (7) | 0.0197 (7) | 0.0017 (7) |
C8 | 0.0468 (10) | 0.0472 (10) | 0.0458 (10) | −0.0068 (8) | 0.0340 (9) | −0.0027 (8) |
C9 | 0.0415 (10) | 0.0505 (11) | 0.0486 (11) | −0.0093 (8) | 0.0301 (9) | −0.0042 (9) |
C10 | 0.0304 (9) | 0.0504 (11) | 0.0377 (9) | −0.0061 (8) | 0.0184 (8) | −0.0033 (8) |
C11 | 0.0513 (12) | 0.0700 (14) | 0.0408 (11) | −0.0159 (10) | 0.0211 (10) | −0.0114 (10) |
C12 | 0.0440 (11) | 0.0606 (13) | 0.0680 (14) | 0.0035 (10) | 0.0314 (11) | 0.0068 (11) |
C13 | 0.0764 (16) | 0.0826 (17) | 0.0574 (13) | −0.0205 (13) | 0.0493 (13) | 0.0003 (12) |
S1—C7 | 1.6875 (17) | C6—H6A | 0.9300 |
N1—C7 | 1.366 (2) | C8—C9 | 1.322 (3) |
N1—C8 | 1.430 (2) | C8—C13 | 1.499 (3) |
N1—C5 | 1.443 (2) | C9—C10 | 1.501 (3) |
N2—C7 | 1.334 (2) | C9—H9A | 0.9300 |
N2—C10 | 1.477 (2) | C10—C11 | 1.524 (3) |
N2—H14A | 0.858 (9) | C10—C12 | 1.528 (3) |
F1—C2 | 1.362 (2) | C11—H11A | 0.9600 |
C1—C2 | 1.367 (3) | C11—H11B | 0.9600 |
C1—C6 | 1.384 (3) | C11—H11C | 0.9600 |
C1—H1A | 0.9300 | C12—H12A | 0.9600 |
C2—C3 | 1.358 (3) | C12—H12B | 0.9600 |
C3—C4 | 1.385 (3) | C12—H12C | 0.9600 |
C3—H3A | 0.9300 | C13—H13A | 0.9600 |
C4—C5 | 1.378 (3) | C13—H13B | 0.9600 |
C4—H4A | 0.9300 | C13—H13C | 0.9600 |
C5—C6 | 1.374 (2) | ||
C7—N1—C8 | 120.85 (14) | N1—C8—C13 | 116.62 (16) |
C7—N1—C5 | 119.30 (14) | C8—C9—C10 | 122.35 (16) |
C8—N1—C5 | 119.84 (14) | C8—C9—H9A | 118.8 |
C7—N2—C10 | 125.38 (14) | C10—C9—H9A | 118.8 |
C7—N2—H14A | 116.6 (14) | N2—C10—C9 | 106.33 (14) |
C10—N2—H14A | 114.8 (14) | N2—C10—C11 | 107.52 (16) |
C2—C1—C6 | 118.16 (19) | C9—C10—C11 | 111.60 (16) |
C2—C1—H1A | 120.9 | N2—C10—C12 | 109.50 (15) |
C6—C1—H1A | 120.9 | C9—C10—C12 | 111.38 (17) |
C3—C2—F1 | 118.5 (2) | C11—C10—C12 | 110.33 (16) |
C3—C2—C1 | 123.24 (18) | C10—C11—H11A | 109.5 |
F1—C2—C1 | 118.21 (19) | C10—C11—H11B | 109.5 |
C2—C3—C4 | 118.33 (19) | H11A—C11—H11B | 109.5 |
C2—C3—H3A | 120.8 | C10—C11—H11C | 109.5 |
C4—C3—H3A | 120.8 | H11A—C11—H11C | 109.5 |
C5—C4—C3 | 119.74 (18) | H11B—C11—H11C | 109.5 |
C5—C4—H4A | 120.1 | C10—C12—H12A | 109.5 |
C3—C4—H4A | 120.1 | C10—C12—H12B | 109.5 |
C6—C5—C4 | 120.68 (16) | H12A—C12—H12B | 109.5 |
C6—C5—N1 | 120.46 (16) | C10—C12—H12C | 109.5 |
C4—C5—N1 | 118.85 (16) | H12A—C12—H12C | 109.5 |
C5—C6—C1 | 119.84 (18) | H12B—C12—H12C | 109.5 |
C5—C6—H6A | 120.1 | C8—C13—H13A | 109.5 |
C1—C6—H6A | 120.1 | C8—C13—H13B | 109.5 |
N2—C7—N1 | 116.45 (15) | H13A—C13—H13B | 109.5 |
N2—C7—S1 | 121.47 (13) | C8—C13—H13C | 109.5 |
N1—C7—S1 | 122.06 (12) | H13A—C13—H13C | 109.5 |
C9—C8—N1 | 119.19 (16) | H13B—C13—H13C | 109.5 |
C9—C8—C13 | 124.10 (18) | ||
C6—C1—C2—C3 | 0.0 (3) | C8—N1—C7—N2 | 9.5 (2) |
C6—C1—C2—F1 | 179.83 (19) | C5—N1—C7—N2 | −169.62 (15) |
F1—C2—C3—C4 | 179.86 (18) | C8—N1—C7—S1 | −168.57 (14) |
C1—C2—C3—C4 | −0.3 (3) | C5—N1—C7—S1 | 12.3 (2) |
C2—C3—C4—C5 | 0.2 (3) | C7—N1—C8—C9 | −16.1 (3) |
C3—C4—C5—C6 | 0.2 (3) | C5—N1—C8—C9 | 163.03 (17) |
C3—C4—C5—N1 | 178.83 (16) | C7—N1—C8—C13 | 160.48 (18) |
C7—N1—C5—C6 | −88.4 (2) | C5—N1—C8—C13 | −20.4 (3) |
C8—N1—C5—C6 | 92.4 (2) | N1—C8—C9—C10 | −4.4 (3) |
C7—N1—C5—C4 | 93.0 (2) | C13—C8—C9—C10 | 179.3 (2) |
C8—N1—C5—C4 | −86.2 (2) | C7—N2—C10—C9 | −34.3 (2) |
C4—C5—C6—C1 | −0.5 (3) | C7—N2—C10—C11 | −153.97 (18) |
N1—C5—C6—C1 | −179.11 (17) | C7—N2—C10—C12 | 86.1 (2) |
C2—C1—C6—C5 | 0.4 (3) | C8—C9—C10—N2 | 26.1 (3) |
C10—N2—C7—N1 | 18.2 (3) | C8—C9—C10—C11 | 143.1 (2) |
C10—N2—C7—S1 | −163.71 (14) | C8—C9—C10—C12 | −93.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H14A···S1i | 0.86 (2) | 2.57 (2) | 3.422 (2) | 172 (2) |
Symmetry code: (i) −x, y, −z+1/2. |
Acknowledgements
The authors thank the Ministry of Higher Education of Malaysia and Universiti Kebangsaan Malaysia for the research grant FRGS 1/2015/ST01/UKM/02/2 and Universiti Teknologi MARA FRGS/2/2014/SKK03/UITM/02/1 for the publication.
References
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ismail, N. L., Othman, E. & Yamin, B. M. (2007). Acta Cryst. E63, o2442–o2443. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamin, B. M., Kasim, N. A. M. & Hamzah, N. (2005). Acta Cryst. E61, o55–o57. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yamin, B. M., Lawi, R. L. & Salem, H. F. (2011). Acta Cryst. E67, o1810. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.