organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(4-Fluoro­phen­yl)-4,4,6-tri­methyl-3,4-di­hydro­pyrimidine-2(1H)-thione

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia, and bSchool of Chemistry, Faculty of Applied Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E., Malaysia
*Correspondence e-mail: hamiz410@salam.uitm.edu.my

Edited by A. J. Lough, University of Toronto, Canada (Received 25 May 2016; accepted 21 July 2016; online 26 July 2016)

In the title mol­ecule, C13H15FN2S, the di­hydro­pyrimidine ring is in a flattened boat conformation with deviations of 0.135 (2) and 0.371 (2) Å for the fluorophenyl-substituted N atom and the dimethyl-substituted C atom, respectively, from the four other essentially co-planar atoms. In the crystal, pairs of mol­ecules related by twofold rotation axes are linked by N—H⋯S hydrogen bonds, forming dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is related to 4,4,6-trimethyl-1-phenyl-3,4- di­hydro­pyrimidne-2-(1H)-thione (Yamin et al., 2005[Yamin, B. M., Kasim, N. A. M. & Hamzah, N. (2005). Acta Cryst. E61, o55-o57.]; Ismail et al., 2007[Ismail, N. L., Othman, E. & Yamin, B. M. (2007). Acta Cryst. E63, o2442-o2443.]), and isomeric to (S)-1-(3-fluoro­phen­yl)-4,4,6-tri­methyl­tetra­hydro­pyrimidine-2(1H)-thione (Yamin et al., 2011[Yamin, B. M., Lawi, R. L. & Salem, H. F. (2011). Acta Cryst. E67, o1810.]) in which the di­hydro­pyrimidine rings are in flattened sofa conformations. The di­hydro­pyrimidine ring (N1/N2/C7–C10) in the title compound (Fig. 1[link]) is in a flattened boat conformation with deviations of 0.135 (2) and 0.371 (2) Å for atoms N1 and C10, respectively, from the mean plane through atoms C7/C8/C9/N2. The benzene (C1–C6) and four planar atoms (C7/C8/C9/N2) of the di­hydro­pyrimidine ring form a dihedral angle of 85.78 (13)°. The bond length and angles are in normal ranges and comparable to those in the above mentioned analogs. In the crystal, pairs of mol­ecules related by twofold rotation axes are linked by N—H⋯S hydrogen bonds, forming dimers (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H14A⋯S1i 0.86 (2) 2.57 (2) 3.422 (2) 172 (2)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the b axis. The dashed lines indicate hydrogen bonds.

Synthesis and crystallization

A procedure similar to that used for the preparation of 1-(3-fluoro­phen­yl)-4,4,6-tri­meth­yl-3,4-di­hydro­pyrimidine-2(1H)-thione (Yamin et al., 2011[Yamin, B. M., Lawi, R. L. & Salem, H. F. (2011). Acta Cryst. E67, o1810.]) was followed. Equimolar qu­anti­ties of thio­cyanic acid and 4-fluoro-aniline (5.4 mmol) in acetone were stirred for 2–3 h. Colourless crystals of 78% yield were obtained after three days by evaporation at room temperature. Melting point 456.8–458.9 K. Analysis calculated for C13H15F1N2S1: C, 58.53; H, 5.67; N,10.50; S, 12.02%; found: C, 62.32; H, 5.99; F, 7.59; N, 11.19; S, 12.78, IR(KBr), v (cm−1) 1535 (C=S), 1591 (C=C), 3184 (N—H). 1H NMR (CDCl3, 400 MHz): δ 1.34 (6H, s, 2CH3), 1.49 (3H, s, CH3), 4.83 (1H, s, CH), 11.50 (1H, s, NH), 7.06–7.50 (C6H5 ring); 13C{1H}: δ 20.9 (CH3), 31.6 (2CH3), 52.4, 112.3, 132.4 (3Cquaternary), 128–130.1 (C6H5 ring) and 177.4 (C=S).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H15FN2S
Mr 250.33
Crystal system, space group Monoclinic, C2/c
Temperature (K) 303
a, b, c (Å) 21.231 (3), 10.8714 (14), 14.589 (4)
β (°) 128.524 (3)
V3) 2634.3 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.47 × 0.46 × 0.19
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.897, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 35963, 2452, 2017
Rint 0.043
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.10
No. of reflections 2452
No. of parameters 158
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.27
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

1-(4-Fluorophenyl)-4,4,6-trimethyl-3,4-dihydropyrimidine-2(1H)-thione top
Crystal data top
C13H15FN2SF(000) = 1056
Mr = 250.33Dx = 1.262 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9935 reflections
a = 21.231 (3) Åθ = 3.3–28.1°
b = 10.8714 (14) ŵ = 0.24 mm1
c = 14.589 (4) ÅT = 303 K
β = 128.524 (3)°Block, colourless
V = 2634.3 (8) Å30.47 × 0.46 × 0.19 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
2452 independent reflections
Radiation source: fine-focus sealed tube2017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 3.3°
ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1313
Tmin = 0.897, Tmax = 0.956l = 1717
35963 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0435P)2 + 2.1835P]
where P = (Fo2 + 2Fc2)/3
2452 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07442 (3)0.80412 (5)0.43577 (4)0.04451 (17)
N10.02089 (8)0.72028 (14)0.48345 (12)0.0373 (3)
N20.07352 (8)0.71633 (15)0.29028 (12)0.0420 (4)
F10.19803 (9)0.90181 (15)0.93207 (11)0.0869 (5)
C10.16002 (12)0.7460 (2)0.79555 (16)0.0543 (5)
H1A0.20640.70220.85220.065*
C20.14420 (13)0.8571 (2)0.82123 (16)0.0531 (5)
C30.07749 (13)0.92469 (19)0.74188 (18)0.0528 (5)
H3A0.06860.99980.76270.063*
C40.02300 (11)0.87899 (18)0.62920 (16)0.0447 (4)
H4A0.02310.92350.57300.054*
C50.03739 (10)0.76731 (16)0.60068 (14)0.0364 (4)
C60.10517 (12)0.70054 (18)0.68297 (16)0.0467 (5)
H6A0.11420.62500.66310.056*
C70.01163 (10)0.74492 (16)0.40060 (14)0.0338 (4)
C80.08797 (11)0.65017 (17)0.45490 (16)0.0431 (4)
C90.15077 (11)0.63413 (18)0.34358 (16)0.0455 (4)
H9A0.19260.58380.32530.055*
C100.15696 (10)0.69430 (17)0.24567 (15)0.0414 (4)
C110.19692 (13)0.6099 (2)0.13948 (17)0.0592 (6)
H11A0.16810.53350.16270.089*
H11B0.19630.64860.08090.089*
H11C0.25160.59450.10800.089*
C120.20189 (12)0.8167 (2)0.2106 (2)0.0599 (6)
H12A0.17620.86880.27820.090*
H12B0.25660.80200.17910.090*
H12C0.20110.85600.15240.090*
C130.07976 (15)0.5930 (2)0.55542 (19)0.0670 (7)
H13A0.12800.54850.52620.100*
H13B0.07130.65630.60790.100*
H13C0.03470.53760.59640.100*
H14A0.0688 (12)0.7351 (19)0.2377 (14)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0318 (2)0.0689 (3)0.0334 (3)0.0048 (2)0.0206 (2)0.0011 (2)
N10.0375 (8)0.0477 (9)0.0288 (7)0.0032 (6)0.0216 (6)0.0019 (6)
N20.0330 (8)0.0655 (10)0.0288 (7)0.0041 (7)0.0199 (7)0.0017 (7)
F10.0906 (10)0.0940 (11)0.0403 (7)0.0210 (8)0.0233 (7)0.0230 (7)
C10.0508 (12)0.0621 (13)0.0353 (10)0.0047 (10)0.0197 (9)0.0064 (9)
C20.0574 (12)0.0620 (13)0.0343 (10)0.0166 (10)0.0257 (10)0.0112 (9)
C30.0612 (13)0.0486 (11)0.0534 (12)0.0070 (10)0.0381 (11)0.0144 (9)
C40.0450 (10)0.0464 (11)0.0439 (10)0.0026 (8)0.0283 (9)0.0017 (8)
C50.0392 (9)0.0445 (10)0.0302 (8)0.0030 (7)0.0238 (8)0.0014 (7)
C60.0520 (11)0.0482 (11)0.0388 (10)0.0062 (9)0.0277 (9)0.0000 (8)
C70.0328 (8)0.0401 (9)0.0294 (8)0.0041 (7)0.0197 (7)0.0017 (7)
C80.0468 (10)0.0472 (10)0.0458 (10)0.0068 (8)0.0340 (9)0.0027 (8)
C90.0415 (10)0.0505 (11)0.0486 (11)0.0093 (8)0.0301 (9)0.0042 (9)
C100.0304 (9)0.0504 (11)0.0377 (9)0.0061 (8)0.0184 (8)0.0033 (8)
C110.0513 (12)0.0700 (14)0.0408 (11)0.0159 (10)0.0211 (10)0.0114 (10)
C120.0440 (11)0.0606 (13)0.0680 (14)0.0035 (10)0.0314 (11)0.0068 (11)
C130.0764 (16)0.0826 (17)0.0574 (13)0.0205 (13)0.0493 (13)0.0003 (12)
Geometric parameters (Å, º) top
S1—C71.6875 (17)C6—H6A0.9300
N1—C71.366 (2)C8—C91.322 (3)
N1—C81.430 (2)C8—C131.499 (3)
N1—C51.443 (2)C9—C101.501 (3)
N2—C71.334 (2)C9—H9A0.9300
N2—C101.477 (2)C10—C111.524 (3)
N2—H14A0.858 (9)C10—C121.528 (3)
F1—C21.362 (2)C11—H11A0.9600
C1—C21.367 (3)C11—H11B0.9600
C1—C61.384 (3)C11—H11C0.9600
C1—H1A0.9300C12—H12A0.9600
C2—C31.358 (3)C12—H12B0.9600
C3—C41.385 (3)C12—H12C0.9600
C3—H3A0.9300C13—H13A0.9600
C4—C51.378 (3)C13—H13B0.9600
C4—H4A0.9300C13—H13C0.9600
C5—C61.374 (2)
C7—N1—C8120.85 (14)N1—C8—C13116.62 (16)
C7—N1—C5119.30 (14)C8—C9—C10122.35 (16)
C8—N1—C5119.84 (14)C8—C9—H9A118.8
C7—N2—C10125.38 (14)C10—C9—H9A118.8
C7—N2—H14A116.6 (14)N2—C10—C9106.33 (14)
C10—N2—H14A114.8 (14)N2—C10—C11107.52 (16)
C2—C1—C6118.16 (19)C9—C10—C11111.60 (16)
C2—C1—H1A120.9N2—C10—C12109.50 (15)
C6—C1—H1A120.9C9—C10—C12111.38 (17)
C3—C2—F1118.5 (2)C11—C10—C12110.33 (16)
C3—C2—C1123.24 (18)C10—C11—H11A109.5
F1—C2—C1118.21 (19)C10—C11—H11B109.5
C2—C3—C4118.33 (19)H11A—C11—H11B109.5
C2—C3—H3A120.8C10—C11—H11C109.5
C4—C3—H3A120.8H11A—C11—H11C109.5
C5—C4—C3119.74 (18)H11B—C11—H11C109.5
C5—C4—H4A120.1C10—C12—H12A109.5
C3—C4—H4A120.1C10—C12—H12B109.5
C6—C5—C4120.68 (16)H12A—C12—H12B109.5
C6—C5—N1120.46 (16)C10—C12—H12C109.5
C4—C5—N1118.85 (16)H12A—C12—H12C109.5
C5—C6—C1119.84 (18)H12B—C12—H12C109.5
C5—C6—H6A120.1C8—C13—H13A109.5
C1—C6—H6A120.1C8—C13—H13B109.5
N2—C7—N1116.45 (15)H13A—C13—H13B109.5
N2—C7—S1121.47 (13)C8—C13—H13C109.5
N1—C7—S1122.06 (12)H13A—C13—H13C109.5
C9—C8—N1119.19 (16)H13B—C13—H13C109.5
C9—C8—C13124.10 (18)
C6—C1—C2—C30.0 (3)C8—N1—C7—N29.5 (2)
C6—C1—C2—F1179.83 (19)C5—N1—C7—N2169.62 (15)
F1—C2—C3—C4179.86 (18)C8—N1—C7—S1168.57 (14)
C1—C2—C3—C40.3 (3)C5—N1—C7—S112.3 (2)
C2—C3—C4—C50.2 (3)C7—N1—C8—C916.1 (3)
C3—C4—C5—C60.2 (3)C5—N1—C8—C9163.03 (17)
C3—C4—C5—N1178.83 (16)C7—N1—C8—C13160.48 (18)
C7—N1—C5—C688.4 (2)C5—N1—C8—C1320.4 (3)
C8—N1—C5—C692.4 (2)N1—C8—C9—C104.4 (3)
C7—N1—C5—C493.0 (2)C13—C8—C9—C10179.3 (2)
C8—N1—C5—C486.2 (2)C7—N2—C10—C934.3 (2)
C4—C5—C6—C10.5 (3)C7—N2—C10—C11153.97 (18)
N1—C5—C6—C1179.11 (17)C7—N2—C10—C1286.1 (2)
C2—C1—C6—C50.4 (3)C8—C9—C10—N226.1 (3)
C10—N2—C7—N118.2 (3)C8—C9—C10—C11143.1 (2)
C10—N2—C7—S1163.71 (14)C8—C9—C10—C1293.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H14A···S1i0.86 (2)2.57 (2)3.422 (2)172 (2)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia and Universiti Kebangsaan Malaysia for the research grant FRGS 1/2015/ST01/UKM/02/2 and Universiti Teknologi MARA FRGS/2/2014/SKK03/UITM/02/1 for the publication.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIsmail, N. L., Othman, E. & Yamin, B. M. (2007). Acta Cryst. E63, o2442–o2443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M., Kasim, N. A. M. & Hamzah, N. (2005). Acta Cryst. E61, o55–o57.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamin, B. M., Lawi, R. L. & Salem, H. F. (2011). Acta Cryst. E67, o1810.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds