organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Methyl­pyridinium 2-carb­­oxy-6-nitro­benzoate

CROSSMARK_Color_square_no_text.svg

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, cDepartment of Physics, Alagappa University, Karaikkudi 630 003, India, and dPost Graduate and Research Department of Physics, The American College, Madurai 625 002, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 4 July 2016; accepted 7 July 2016; online 12 July 2016)

In the title mol­ecular salt, C6H8N+·C8H4NO6, the pyridine ring is protonated at the N atom and the anion is deprotonated at one of the hy­droxy O atoms. The dihedral angle between the planes of the benzene and pyridine rings is 8.45 (9)°. In the anion, the deprotonated carboxyl­ate group is twisted at an angle of 73.78 (11)° from the attached benzene ring, whereas the carb­oxy group is slightly oriented at an angle of 14.98 (10)°. N—H⋯O and O—H⋯O hydrogen bonds link the anions and cations into an infinite chain along the c axis and these chains are further consolidated by C—H⋯O hydrogen bonds to form a three-dimensional network. The crystals structure is also influenced by weak ππ inter­actions [centroid–centroid distance = 3.9055 (9) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine derivatives have been reported for their wide range of applications, such as anti­microbial, analgesic, anti­hyperglycemic, anti­proliferative and anti­tumor activities (Brandt et al., 2010[Brandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). Eur. J. Med. Chem. 45, 2919-2927.]; El-Sayed et al., 2011[El-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-ElHalawa, R. & El Ashry, E. S. H. (2011). Eur. J. Med. Chem. 46, 2948-2954.]). We herein report the synthesis and crystal structure of 2-methyl­pyridinium 2-carb­oxy-6-nitro­benzoate (Fig. 1[link]). The geometric parameters are comparable with similar structures reported previously (Divya Bharathi et al., 2015[Divya Bharathi, M., Ahila, G., Mohana, J., Chakkaravarthi, G. & Anbalagan, G. (2015). Acta Cryst. E71, o261-o262.]; Sivakumar et al., 2016[Sivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160747.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with the atom labelling and 30% probability displacement ellipsoids.

The dihedral angle between the planes of the benzene (C1–C6) and pyridine (N2/C9–C13) rings is 8.45 (9)°. In the anion, the deprotonated carboxyl­ate group (O3/C7/O4) is twisted at an angle of 73.78 (11)° from the attached benzene ring, whereas the carb­oxy group (O5/C8/O6) is slightly oriented at an angle of 14.98 (10)°. N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]) link the anions and cations into an infinite chain along the c axis and these chains are further consolidated by C—H⋯O contacts (Table 1[link]) to form a three-dimensional network (Fig. 2[link]). The crystal structure is also influenced by a weak ππ inter­action between the benzene rings [CgCgi distance = 3.9055 (9) Å; symmetry code: (i) −x, −y + 1, −z + 2].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.88 (1) 1.74 (1) 2.6156 (17) 173 (2)
O6—H6⋯O4ii 0.82 (1) 1.72 (1) 2.5381 (17) 176 (3)
C4—H4⋯O6iii 0.93 2.60 3.493 (2) 161
C10—H10⋯O4iv 0.93 2.50 3.189 (2) 131
C11—H11⋯O1v 0.93 2.45 3.346 (3) 162
C14—H14C⋯O5 0.96 2.52 3.428 (3) 158
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y, z-1; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram of the title compound, viewed along the b axis Hydrogen bonds are shown as dashed lines and C-bound H atoms which are not involved in the inter­actions have been omitted for clarity.

Synthesis and crystallization

When 3-nitro­phthalic acid (2.11 g) and 2-methyl­pyridine (0.931 g) were added to 15 ml of acetone, a white precipitate formed. The precipitate was dissolved in 20 ml of distilled water and kept for slow evaporation at room temperature. Single crystals suitable for X-ray diffraction study were harvested after 45 d.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H8N+·C8H4NO6
Mr 304.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 13.1617 (6), 14.1804 (4), 7.4923 (3)
β (°) 98.758 (2)
V3) 1382.04 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.26 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.970, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 30283, 4541, 3030
Rint 0.035
(sin θ/λ)max−1) 0.733
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.163, 1.08
No. of reflections 4541
No. of parameters 207
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

2-Methylpyridinium 2-carboxy-6-nitrobenzoate top
Crystal data top
C6H8N+·C8H4NO6F(000) = 632
Mr = 304.26Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8089 reflections
a = 13.1617 (6) Åθ = 2.4–30.4°
b = 14.1804 (4) ŵ = 0.12 mm1
c = 7.4923 (3) ÅT = 295 K
β = 98.758 (2)°Block, colourless
V = 1382.04 (9) Å30.26 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4541 independent reflections
Radiation source: fine-focus sealed tube3030 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scanθmax = 31.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1819
Tmin = 0.970, Tmax = 0.979k = 2020
30283 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0726P)2 + 0.3878P]
where P = (Fo2 + 2Fc2)/3
4541 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14459 (11)0.37567 (10)0.85916 (19)0.0288 (3)
C20.05285 (13)0.37663 (12)0.7378 (2)0.0379 (4)
H20.02970.32140.67810.045*
C30.00370 (14)0.45810 (14)0.7053 (2)0.0430 (4)
H30.06510.45730.62540.052*
C40.03003 (13)0.54042 (12)0.7901 (2)0.0382 (4)
H40.00660.59620.76570.046*
C50.12005 (11)0.53859 (10)0.9131 (2)0.0301 (3)
C60.17868 (11)0.45788 (10)0.95374 (18)0.0259 (3)
C70.27615 (11)0.45897 (9)1.09188 (19)0.0269 (3)
C80.20863 (13)0.28803 (11)0.8768 (2)0.0332 (3)
C90.40945 (12)0.51335 (12)0.6703 (2)0.0337 (3)
C100.32040 (14)0.55589 (14)0.5859 (3)0.0471 (5)
H100.26950.52000.51780.057*
C110.30748 (17)0.65092 (16)0.6028 (3)0.0605 (6)
H110.24710.67950.54790.073*
C120.38325 (19)0.70445 (15)0.7007 (3)0.0655 (7)
H120.37510.76920.71200.079*
C130.47059 (16)0.66071 (14)0.7808 (3)0.0533 (5)
H130.52290.69570.84740.064*
C140.42969 (16)0.41122 (13)0.6643 (3)0.0472 (4)
H14A0.50190.40080.66560.071*
H14B0.39190.38500.55590.071*
H14C0.40850.38130.76750.071*
N10.15079 (11)0.62778 (10)1.0041 (2)0.0419 (4)
N20.48092 (10)0.56815 (10)0.76378 (19)0.0366 (3)
O10.12179 (15)0.70028 (10)0.9258 (3)0.0865 (7)
O20.20205 (12)0.62608 (9)1.1529 (2)0.0536 (4)
O30.35201 (8)0.49864 (9)1.04405 (16)0.0389 (3)
O40.27360 (10)0.42200 (8)1.24116 (15)0.0392 (3)
O50.29721 (10)0.28674 (8)0.94647 (19)0.0488 (4)
O60.15868 (10)0.21431 (9)0.8020 (2)0.0511 (4)
H2A0.5366 (11)0.5419 (14)0.822 (3)0.053 (6)*
H60.1968 (18)0.1700 (14)0.787 (4)0.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0275 (7)0.0311 (7)0.0266 (6)0.0022 (6)0.0001 (5)0.0017 (5)
C20.0329 (8)0.0446 (9)0.0328 (8)0.0056 (7)0.0055 (6)0.0061 (7)
C30.0305 (8)0.0566 (11)0.0374 (9)0.0006 (8)0.0086 (7)0.0036 (8)
C40.0303 (8)0.0409 (9)0.0414 (9)0.0055 (7)0.0016 (6)0.0102 (7)
C50.0285 (7)0.0280 (7)0.0326 (7)0.0015 (6)0.0009 (6)0.0040 (6)
C60.0240 (6)0.0281 (7)0.0245 (6)0.0017 (5)0.0003 (5)0.0031 (5)
C70.0278 (7)0.0227 (6)0.0278 (7)0.0020 (5)0.0040 (5)0.0002 (5)
C80.0356 (8)0.0314 (8)0.0315 (7)0.0027 (6)0.0014 (6)0.0053 (6)
C90.0323 (8)0.0401 (8)0.0280 (7)0.0019 (6)0.0024 (6)0.0004 (6)
C100.0381 (9)0.0525 (11)0.0450 (10)0.0061 (8)0.0122 (7)0.0087 (8)
C110.0508 (12)0.0596 (13)0.0636 (13)0.0228 (10)0.0156 (10)0.0056 (10)
C120.0685 (15)0.0424 (11)0.0782 (16)0.0159 (10)0.0126 (12)0.0103 (10)
C130.0499 (11)0.0426 (10)0.0617 (12)0.0012 (9)0.0094 (9)0.0071 (9)
C140.0537 (11)0.0395 (9)0.0474 (10)0.0018 (8)0.0049 (8)0.0008 (8)
N10.0356 (7)0.0270 (7)0.0613 (10)0.0008 (6)0.0015 (7)0.0022 (6)
N20.0296 (7)0.0414 (7)0.0365 (7)0.0014 (6)0.0019 (5)0.0027 (6)
O10.0902 (14)0.0297 (7)0.1243 (16)0.0004 (8)0.0329 (12)0.0156 (8)
O20.0592 (9)0.0382 (7)0.0583 (9)0.0027 (6)0.0076 (7)0.0118 (6)
O30.0269 (6)0.0467 (7)0.0408 (6)0.0058 (5)0.0024 (5)0.0093 (5)
O40.0495 (7)0.0361 (6)0.0285 (5)0.0101 (5)0.0054 (5)0.0065 (4)
O50.0402 (7)0.0359 (6)0.0636 (8)0.0062 (5)0.0132 (6)0.0091 (6)
O60.0388 (7)0.0353 (7)0.0764 (10)0.0018 (5)0.0002 (6)0.0223 (6)
Geometric parameters (Å, º) top
C1—C21.397 (2)C9—C101.383 (2)
C1—C61.4021 (19)C9—C141.474 (3)
C1—C81.496 (2)C10—C111.366 (3)
C2—C31.376 (3)C10—H100.9300
C2—H20.9300C11—C121.373 (3)
C3—C41.370 (3)C11—H110.9300
C3—H30.9300C12—C131.362 (3)
C4—C51.386 (2)C12—H120.9300
C4—H40.9300C13—N21.328 (2)
C5—C61.388 (2)C13—H130.9300
C5—N11.465 (2)C14—H14A0.9600
C6—C71.5208 (19)C14—H14B0.9600
C7—O41.2403 (18)C14—H14C0.9600
C7—O31.2453 (19)N1—O21.212 (2)
C8—O51.203 (2)N1—O11.216 (2)
C8—O61.3141 (19)N2—H2A0.876 (9)
C9—N21.334 (2)O6—H60.822 (10)
C2—C1—C6119.96 (14)C10—C9—C14123.99 (16)
C2—C1—C8119.03 (13)C11—C10—C9119.77 (17)
C6—C1—C8120.88 (13)C11—C10—H10120.1
C3—C2—C1120.95 (15)C9—C10—H10120.1
C3—C2—H2119.5C10—C11—C12120.28 (18)
C1—C2—H2119.5C10—C11—H11119.9
C4—C3—C2120.33 (15)C12—C11—H11119.9
C4—C3—H3119.8C13—C12—C11118.62 (19)
C2—C3—H3119.8C13—C12—H12120.7
C3—C4—C5118.43 (15)C11—C12—H12120.7
C3—C4—H4120.8N2—C13—C12119.97 (18)
C5—C4—H4120.8N2—C13—H13120.0
C4—C5—C6123.49 (14)C12—C13—H13120.0
C4—C5—N1116.18 (14)C9—C14—H14A109.5
C6—C5—N1120.32 (13)C9—C14—H14B109.5
C5—C6—C1116.75 (13)H14A—C14—H14B109.5
C5—C6—C7121.62 (13)C9—C14—H14C109.5
C1—C6—C7121.62 (12)H14A—C14—H14C109.5
O4—C7—O3125.69 (13)H14B—C14—H14C109.5
O4—C7—C6118.26 (13)O2—N1—O1123.40 (16)
O3—C7—C6116.04 (12)O2—N1—C5119.14 (13)
O5—C8—O6124.19 (15)O1—N1—C5117.45 (16)
O5—C8—C1123.15 (14)C13—N2—C9123.51 (16)
O6—C8—C1112.61 (13)C13—N2—H2A117.5 (14)
N2—C9—C10117.84 (16)C9—N2—H2A118.9 (14)
N2—C9—C14118.17 (15)C8—O6—H6113 (2)
C6—C1—C2—C31.8 (3)C1—C6—C7—O3105.86 (16)
C8—C1—C2—C3174.11 (17)C2—C1—C8—O5163.55 (17)
C1—C2—C3—C40.9 (3)C6—C1—C8—O512.4 (2)
C2—C3—C4—C52.2 (3)C2—C1—C8—O614.0 (2)
C3—C4—C5—C60.7 (3)C6—C1—C8—O6170.11 (15)
C3—C4—C5—N1178.05 (16)N2—C9—C10—C111.1 (3)
C4—C5—C6—C11.9 (2)C14—C9—C10—C11178.4 (2)
N1—C5—C6—C1179.33 (14)C9—C10—C11—C121.1 (4)
C4—C5—C6—C7179.05 (15)C10—C11—C12—C130.5 (4)
N1—C5—C6—C70.3 (2)C11—C12—C13—N20.2 (4)
C2—C1—C6—C53.2 (2)C4—C5—N1—O2152.73 (17)
C8—C1—C6—C5172.70 (14)C6—C5—N1—O226.1 (2)
C2—C1—C6—C7177.83 (14)C4—C5—N1—O126.3 (2)
C8—C1—C6—C76.3 (2)C6—C5—N1—O1154.86 (19)
C5—C6—C7—O4106.09 (17)C12—C13—N2—C90.2 (3)
C1—C6—C7—O474.96 (19)C10—C9—N2—C130.5 (3)
C5—C6—C7—O373.09 (19)C14—C9—N2—C13179.03 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.88 (1)1.74 (1)2.6156 (17)173 (2)
O6—H6···O4ii0.82 (1)1.72 (1)2.5381 (17)176 (3)
C4—H4···O6iii0.932.603.493 (2)161
C10—H10···O4iv0.932.503.189 (2)131
C11—H11···O1v0.932.453.346 (3)162
C14—H14C···O50.962.523.428 (3)158
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+3/2; (iv) x, y, z1; (v) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBrandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). Eur. J. Med. Chem. 45, 2919–2927.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDivya Bharathi, M., Ahila, G., Mohana, J., Chakkaravarthi, G. & Anbalagan, G. (2015). Acta Cryst. E71, o261–o262.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-ElHalawa, R. & El Ashry, E. S. H. (2011). Eur. J. Med. Chem. 46, 2948–2954.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160747.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds