organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[(5-Amino-1,3,4-thia­diazol-2-yl)sulfan­yl]-N-(4-chloro­phen­yl)acetamide

CROSSMARK_Color_square_no_text.svg

aPURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, bDepartment of Post-Graduate and Research In Chemistry, Mangalagangori, Mangalore University, India, cDepartment of Physics, Sheshadripuram PU college, Mysore 570 017, India, dDepartment of Material Science, Mangalore University, Mangaluru 574 199, India, and eDepartment of Physics, Faculty of Science, An Najah National University, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: muneer@najah.edu

Edited by P. C. Healy, Griffith University, Australia (Received 4 July 2016; accepted 13 July 2016; online 15 July 2016)

In the title compound, C10H9ClN4OS2, the dihedral angle between the planes of the chloro­phenyl and thia­diazole groups is 32.93 (16)°. The mol­ecules are connected through inter­molecular N—H⋯N and N—H⋯O hydrogen bonds. An N—H⋯N hydrogen bond forms R22(8) ring motifs.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our research on synthesis and crystal structure determination of imidazo[2,1-b][1,3,4]thia­diazole derivatives, we report here the crystal and mol­ecular structure of 2-[(5-amino-1,3,4-thia­diazol-2-yl)sulfan­yl]-N-(4-chloro­phen­yl)acetamide (Fig. 1[link]).

[Figure 1]
Figure 1
A view of the title mol­ecule, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The dihedral angle between the chloro­phenyl (C5–C10) and thia­diazol (C1/C2/N1/N2/S1) rings is 32.93 (16)°. In the crystal (Fig. 2[link]), the mol­ecules are connected through N—H⋯N and N—H⋯O hydrogen bonds (Table 1[link]), the N3—H3A⋯N2 hydrogen bonds forming R22(8) ring motifs. Overall, these inter­actions generate a two-dimensional network parallel to (100).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.12 2.978 (3) 172
N3—H3B⋯N1ii 0.86 2.17 2.973 (3) 156
N3—H3B⋯N2ii 0.86 2.58 3.319 (3) 144
N11—H11⋯O1iii 0.86 2.09 2.926 (3) 164
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x, y-1, z.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are drawn as dashed lines.

Synthesis and crystallization

An equimolar ratio of 2-[(5-amino-1,3,4- thia­diazol-2-yl)thio]-N-(4-chloro­phen­yl)acetamide (0.005 mol) and ethyl chloro­acetate (0.005 mol) in glacial acetic acid (20 mL) was heated under reflux for 17 h. The reaction mixture was poured into ice cold water. The precipitated solid was filtered, dried and recrystallized from ethanol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H9ClN4OS2
Mr 300.78
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 26.379 (5), 4.7704 (8), 10.1866 (18)
β (°) 96.996 (7)
V3) 1272.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.62
Crystal size (mm) 0.32 × 0.23 × 0.12
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (NUMABS; Rigaku 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.843, 0.928
No. of measured, independent and observed [I > 2σ(I)] reflections 10559, 2881, 2019
Rint 0.066
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.127, 1.06
No. of reflections 2881
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.34
Computer programs: CrystalClear SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear SM Expert (Rigaku, 2011); cell refinement: CrystalClear SM Expert (Rigaku, 2011); data reduction: CrystalClear SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-[(5-Amino-1,3,4-thiadiazol-2-yl)sulfanyl]-N-(4-chlorophenyl)acetamide top
Crystal data top
C10H9ClN4OS2F(000) = 616
Mr = 300.78Dx = 1.570 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 2881 reflections
a = 26.379 (5) Åθ = 3.1–27.5°
b = 4.7704 (8) ŵ = 0.62 mm1
c = 10.1866 (18) ÅT = 293 K
β = 96.996 (7)°Block, brown
V = 1272.3 (4) Å30.32 × 0.23 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
2019 reflections with I > 2σ(I)
profile data from ω–scansRint = 0.066
Absorption correction: multi-scan
(NUMABS; Rigaku 1999)
θmax = 27.5°, θmin = 3.1°
Tmin = 0.843, Tmax = 0.928h = 3434
10559 measured reflectionsk = 65
2881 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.127 w = 1/[Σ2(Fo2) + (0.049P)2 + 0.4848P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2881 reflectionsΔρmax = 0.34 e Å3
163 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45400 (4)0.6782 (3)0.30886 (13)0.1062 (6)
S10.10780 (3)0.59735 (16)0.36162 (7)0.0389 (2)
S20.15876 (3)0.17391 (16)0.55874 (7)0.0409 (2)
O10.24709 (8)0.7463 (4)0.6213 (2)0.0543 (8)
N10.08143 (8)0.5253 (5)0.5913 (2)0.0386 (8)
N20.04937 (8)0.7301 (5)0.5344 (2)0.0372 (7)
N30.03064 (8)0.9734 (6)0.3363 (2)0.0422 (8)
N110.27991 (9)0.3229 (5)0.5821 (3)0.0476 (9)
C10.05795 (10)0.7883 (6)0.4124 (2)0.0331 (8)
C20.11406 (10)0.4409 (6)0.5160 (2)0.0348 (9)
C30.20296 (10)0.3442 (6)0.6846 (3)0.0394 (9)
C40.24508 (10)0.4915 (6)0.6270 (3)0.0382 (9)
C50.32186 (11)0.4125 (6)0.5165 (3)0.0435 (10)
C60.31545 (12)0.6126 (7)0.4193 (3)0.0554 (11)
C70.35637 (14)0.6942 (9)0.3561 (4)0.0704 (14)
C80.40275 (13)0.5755 (9)0.3893 (4)0.0638 (14)
C90.40974 (13)0.3734 (9)0.4832 (4)0.0719 (15)
C100.36869 (13)0.2904 (8)0.5480 (4)0.0654 (16)
H3A0.006001.061900.366100.0510*
H3B0.037601.004800.257300.0510*
H3C0.184400.478700.732000.0470*
H3D0.217500.204800.747500.0470*
H60.283500.693300.396100.0670*
H70.352100.831000.290600.0840*
H90.441600.290800.504100.0860*
H100.373100.152000.612700.0790*
H110.276600.145600.593900.0570*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0674 (7)0.1549 (13)0.1040 (9)0.0259 (7)0.0419 (6)0.0066 (8)
S10.0432 (4)0.0475 (5)0.0289 (3)0.0042 (3)0.0162 (3)0.0013 (3)
S20.0409 (4)0.0356 (4)0.0466 (4)0.0003 (3)0.0076 (3)0.0044 (3)
O10.0574 (13)0.0294 (12)0.0784 (17)0.0021 (10)0.0176 (12)0.0010 (11)
N10.0427 (13)0.0462 (15)0.0290 (11)0.0023 (11)0.0127 (10)0.0006 (11)
N20.0389 (12)0.0488 (15)0.0259 (11)0.0054 (10)0.0127 (9)0.0016 (10)
N30.0479 (14)0.0551 (17)0.0260 (11)0.0120 (12)0.0140 (10)0.0046 (11)
N110.0482 (15)0.0326 (14)0.0654 (17)0.0006 (11)0.0206 (12)0.0012 (13)
C10.0339 (13)0.0420 (17)0.0251 (12)0.0035 (12)0.0105 (10)0.0049 (12)
C20.0353 (13)0.0394 (17)0.0315 (14)0.0064 (12)0.0109 (11)0.0019 (12)
C30.0434 (15)0.0429 (18)0.0328 (14)0.0029 (13)0.0086 (12)0.0016 (13)
C40.0378 (14)0.0358 (17)0.0399 (15)0.0025 (12)0.0000 (12)0.0009 (13)
C50.0424 (16)0.0399 (18)0.0497 (18)0.0041 (13)0.0116 (13)0.0058 (15)
C60.0480 (18)0.065 (2)0.054 (2)0.0009 (16)0.0099 (15)0.0080 (18)
C70.066 (2)0.087 (3)0.060 (2)0.006 (2)0.0153 (18)0.020 (2)
C80.051 (2)0.082 (3)0.061 (2)0.0152 (19)0.0178 (17)0.006 (2)
C90.0408 (18)0.091 (3)0.086 (3)0.0049 (19)0.0159 (18)0.003 (2)
C100.050 (2)0.072 (3)0.077 (3)0.0151 (18)0.0187 (18)0.019 (2)
Geometric parameters (Å, º) top
Cl1—C81.735 (4)N3—H3A0.8600
S1—C11.730 (3)C5—C101.368 (5)
S1—C21.730 (2)C5—C61.371 (4)
S2—C21.754 (3)C6—C71.379 (5)
S2—C31.816 (3)C7—C81.353 (5)
O1—C41.218 (3)C8—C91.355 (6)
N1—N21.373 (3)C9—C101.393 (5)
N1—C21.285 (3)N11—H110.8600
N2—C11.320 (3)C3—H3C0.9700
N3—C11.328 (4)C3—H3D0.9700
N11—C41.343 (4)C6—H60.9300
N11—C51.426 (4)C7—H70.9300
C3—C41.494 (4)C9—H90.9300
N3—H3B0.8600C10—H100.9300
C1—S1—C286.98 (12)C6—C7—C8120.0 (4)
C2—S2—C3101.82 (13)Cl1—C8—C9119.2 (3)
N2—N1—C2113.2 (2)Cl1—C8—C7119.8 (3)
N1—N2—C1112.3 (2)C7—C8—C9121.0 (4)
C4—N11—C5125.6 (2)C8—C9—C10119.4 (3)
S1—C1—N2113.3 (2)C5—C10—C9120.0 (3)
S1—C1—N3123.62 (17)C4—N11—H11117.00
N2—C1—N3123.1 (2)C5—N11—H11117.00
S1—C2—S2121.71 (14)S2—C3—H3C109.00
S1—C2—N1114.2 (2)S2—C3—H3D109.00
S2—C2—N1123.92 (18)C4—C3—H3C109.00
S2—C3—C4112.2 (2)C4—C3—H3D109.00
H3A—N3—H3B120.00H3C—C3—H3D108.00
C1—N3—H3B120.00C5—C6—H6120.00
C1—N3—H3A120.00C7—C6—H6120.00
N11—C4—C3115.1 (2)C6—C7—H7120.00
O1—C4—C3121.8 (3)C8—C7—H7120.00
O1—C4—N11123.1 (3)C8—C9—H9120.00
N11—C5—C6120.8 (3)C10—C9—H9120.00
N11—C5—C10119.5 (3)C5—C10—H10120.00
C6—C5—C10119.6 (3)C9—C10—H10120.00
C5—C6—C7120.0 (3)
C2—S1—C1—N20.4 (2)C4—N11—C5—C644.4 (5)
C2—S1—C1—N3179.1 (3)C4—N11—C5—C10137.8 (3)
C1—S1—C2—S2176.98 (19)S2—C3—C4—O1107.9 (3)
C1—S1—C2—N11.0 (2)S2—C3—C4—N1171.8 (3)
C3—S2—C2—S1112.82 (18)N11—C5—C6—C7179.3 (3)
C3—S2—C2—N171.6 (3)C10—C5—C6—C71.5 (5)
C2—S2—C3—C489.6 (2)N11—C5—C10—C9179.1 (3)
C2—N1—N2—C12.3 (3)C6—C5—C10—C91.2 (5)
N2—N1—C2—S12.1 (3)C5—C6—C7—C80.5 (6)
N2—N1—C2—S2177.95 (19)C6—C7—C8—Cl1179.7 (3)
N1—N2—C1—S11.5 (3)C6—C7—C8—C90.9 (6)
N1—N2—C1—N3177.9 (2)Cl1—C8—C9—C10180.0 (3)
C5—N11—C4—O13.4 (5)C7—C8—C9—C101.1 (6)
C5—N11—C4—C3176.3 (3)C8—C9—C10—C50.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.122.978 (3)172
N3—H3B···N1ii0.862.172.973 (3)156
N3—H3B···N2ii0.862.583.319 (3)144
N11—H11···O1iii0.862.092.926 (3)164
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x, y1, z.
 

Acknowledgements

The authors thank DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds