organic compounds
Ethyl 2-[(azidocarbonyl)amino]benzoate
aLaboratoire de Chimie Organique et Analytique, University Sultan Moulay Slimane, Faculty of Science and Technology, BP 523, Beni-Mellal, Morocco, bUniv. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unite de Catalyse et Chimie du Solide, F-59000 Lille, France, and cLaboratoire de Spectro-Chimie Applique et Environnement, University Sultan Moulay Slimane, Faculty of Science and Technology, BP 523, Beni-Mellal, Morocco
*Correspondence e-mail: hasna.yassine@yahoo.com
In the almost planar (r.m.s. deviation = 0.038 Å) title compound, C10H10N4O3, an intramolecular N—H⋯O interaction closes an S(6) ring. In the crystal, aromatic π–π stacking interactions occur [inter-centroid distance = 3.65 (2) Å].
Keywords: crystal structure; azide; π–π interactions.
CCDC reference: 1493829
Structure description
Direct conversion of carboxylic acids to acyl et al., 2007). In an attempt to synthesize ethyl 2-isocyanatobenzoate, the title compound was formed and its structure is reported here.
can be achieved by using diphenylphosphoryl azide (DPPA) in the presence of a base (KatritzkyThe molecular structure is shown in Fig. 1. The molecule is approximately planar, with an r.m.s. deviation of 0.038 Å for the non-H atoms. The geometry of the azide group is normal for covalent azide groups, with longer Nα—Nβ distances [N2—N3 = 1.264 (2) Å] and shorter terminal Nβ—Nγ distances [N3—N4 = 1.131 (2) Å], with more triple-bond character. The azide angle is slightly bent [N2—N3—N4 = 174.7 (2)°]. An intramolecular N—H⋯O interaction closes an S(6) ring (Table 1 and Fig. 1). Aromatic π–π stacking interactions occur in the crystal [inter-centroid distance = 3.653 (2) Å].
|
Synthesis and crystallization
A solution of 2-(ethoxycarbonyl) benzoic acid (100 mg, 0.53 mmol), DPPA (0.194 ml, 0.90 mmol) and Et3N (0.127 ml, 0.90 mmol) in toluene (5 ml) was refluxed for 4 h. After cooling to room temperature, the reaction mixture was concentrated. The residue was purified by using EtOAc–hexane (1:9 v/v) as to give purple parallelepiped-shaped crystals (yield 71%, m.p. = 337 K).
1H NMR (300 MHz, CDCl3): δ 1.37 (3H, H10), 4.40 (2H, H9), 7.13 (1H, H5), 7.58 (1H, H4), 8.06 (1H, H3), 8.51 (1H, H6), 10.90 (1H, NH).
13C NMR (75 MHz, CDCl3): δ 14.17 (C10), 61.62 (C9), 115.50 (C7), 119.52 (C3), 122.83 (C5), 130.94 (C6), 134.62 (C4), 140.64 (C2), 154.43 (C1), 167.98 (C8)
Refinement
Crystal data, data collection and structure . The reflection 39 was removed during due to poor agreement.
details are summarized in Table 2Structural data
CCDC reference: 1493829
https://doi.org/10.1107/S241431461601155X/hb4066sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461601155X/hb4066Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461601155X/hb4066Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C10H10N4O3 | F(000) = 976 |
Mr = 234.22 | Dx = 1.355 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.330 (6) Å | Cell parameters from 2352 reflections |
b = 18.724 (4) Å | θ = 2.2–26.4° |
c = 13.484 (3) Å | µ = 0.10 mm−1 |
β = 102.898 (8)° | T = 300 K |
V = 2296.3 (17) Å3 | Parallelepiped, purple |
Z = 8 | 0.32 × 0.24 × 0.17 mm |
Bruker DUO APEXII CCD diffractometer | 1302 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.038 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | θmax = 26.4°, θmin = 2.2° |
Tmin = 0.695, Tmax = 0.746 | h = −11→11 |
16533 measured reflections | k = −22→23 |
2352 independent reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.022P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.61 | (Δ/σ)max < 0.001 |
2352 reflections | Δρmax = 0.14 e Å−3 |
154 parameters | Δρmin = −0.15 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.03497 (14) | 0.23713 (7) | −0.00286 (9) | 0.0749 (4) | |
O2 | 1.00146 (14) | 0.35584 (6) | −0.00214 (9) | 0.0742 (4) | |
O3 | 0.80897 (14) | 0.07009 (6) | 0.20144 (9) | 0.0828 (4) | |
N1 | 0.89748 (15) | 0.15816 (8) | 0.11107 (10) | 0.0644 (4) | |
H1N | 0.9479 | 0.1624 | 0.0652 | 0.077* | |
N2 | 0.94011 (18) | 0.04318 (9) | 0.07886 (11) | 0.0757 (5) | |
N3 | 0.92839 (18) | −0.02151 (11) | 0.10254 (11) | 0.0760 (5) | |
N4 | 0.9226 (2) | −0.08071 (11) | 0.11767 (14) | 0.1044 (7) | |
C1 | 0.87368 (19) | 0.09018 (11) | 0.13835 (12) | 0.0608 (5) | |
C2 | 0.85122 (18) | 0.22285 (9) | 0.14731 (12) | 0.0570 (5) | |
C3 | 0.7684 (2) | 0.22489 (10) | 0.22159 (13) | 0.0672 (5) | |
H3 | 0.7418 | 0.1825 | 0.2487 | 0.081* | |
C4 | 0.7258 (2) | 0.28947 (11) | 0.25512 (14) | 0.0763 (6) | |
H4 | 0.6706 | 0.2900 | 0.3047 | 0.092* | |
C5 | 0.7638 (2) | 0.35352 (11) | 0.21619 (14) | 0.0787 (6) | |
H5 | 0.7347 | 0.3968 | 0.2394 | 0.094* | |
C6 | 0.8451 (2) | 0.35222 (10) | 0.14275 (13) | 0.0708 (5) | |
H6 | 0.8705 | 0.3951 | 0.1165 | 0.085* | |
C7 | 0.89052 (19) | 0.28814 (9) | 0.10673 (11) | 0.0581 (5) | |
C8 | 0.9820 (2) | 0.28912 (10) | 0.02929 (12) | 0.0604 (5) | |
C9 | 1.0927 (2) | 0.36288 (10) | −0.07630 (14) | 0.0796 (6) | |
H9A | 1.0502 | 0.3363 | −0.1376 | 0.096* | |
H9B | 1.1907 | 0.3446 | −0.0485 | 0.096* | |
C10 | 1.0989 (2) | 0.44148 (11) | −0.09986 (16) | 0.0963 (7) | |
H10A | 1.1583 | 0.4485 | −0.1487 | 0.144* | |
H10B | 1.0013 | 0.4588 | −0.1272 | 0.144* | |
H10C | 1.1411 | 0.4671 | −0.0386 | 0.144* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0898 (10) | 0.0688 (9) | 0.0801 (9) | 0.0021 (7) | 0.0486 (8) | −0.0069 (7) |
O2 | 0.0891 (10) | 0.0708 (9) | 0.0754 (8) | 0.0005 (7) | 0.0455 (7) | −0.0005 (7) |
O3 | 0.0948 (10) | 0.0884 (10) | 0.0811 (9) | −0.0028 (8) | 0.0532 (8) | 0.0071 (7) |
N1 | 0.0729 (11) | 0.0685 (11) | 0.0612 (9) | −0.0005 (9) | 0.0347 (8) | −0.0029 (8) |
N2 | 0.1067 (14) | 0.0605 (11) | 0.0740 (10) | −0.0056 (10) | 0.0501 (10) | −0.0004 (8) |
N3 | 0.0918 (13) | 0.0790 (13) | 0.0691 (10) | 0.0015 (11) | 0.0436 (9) | 0.0044 (10) |
N4 | 0.1434 (19) | 0.0794 (14) | 0.1117 (15) | 0.0070 (13) | 0.0739 (13) | 0.0190 (12) |
C1 | 0.0625 (12) | 0.0719 (14) | 0.0529 (10) | −0.0017 (10) | 0.0229 (10) | −0.0007 (9) |
C2 | 0.0504 (11) | 0.0710 (13) | 0.0514 (10) | 0.0027 (10) | 0.0152 (9) | −0.0057 (9) |
C3 | 0.0635 (13) | 0.0816 (14) | 0.0625 (11) | 0.0027 (10) | 0.0270 (10) | −0.0004 (10) |
C4 | 0.0696 (14) | 0.0977 (17) | 0.0702 (12) | 0.0097 (12) | 0.0342 (11) | −0.0065 (12) |
C5 | 0.0806 (15) | 0.0854 (16) | 0.0789 (13) | 0.0172 (12) | 0.0363 (11) | −0.0081 (11) |
C6 | 0.0752 (14) | 0.0730 (14) | 0.0698 (12) | 0.0075 (11) | 0.0283 (11) | −0.0012 (10) |
C7 | 0.0561 (12) | 0.0701 (13) | 0.0513 (10) | 0.0046 (10) | 0.0188 (9) | −0.0027 (9) |
C8 | 0.0617 (13) | 0.0654 (14) | 0.0561 (11) | −0.0015 (10) | 0.0173 (10) | −0.0002 (10) |
C9 | 0.0885 (15) | 0.0813 (15) | 0.0833 (13) | −0.0096 (12) | 0.0495 (12) | −0.0035 (11) |
C10 | 0.1081 (18) | 0.0911 (17) | 0.1038 (16) | −0.0088 (14) | 0.0540 (14) | 0.0110 (12) |
O1—C8 | 1.2147 (19) | C4—C5 | 1.387 (2) |
O2—C8 | 1.3445 (19) | C4—H4 | 0.9300 |
O2—C9 | 1.4566 (19) | C5—C6 | 1.376 (2) |
O3—C1 | 1.2079 (18) | C5—H5 | 0.9300 |
N1—C1 | 1.357 (2) | C6—C7 | 1.395 (2) |
N1—C2 | 1.409 (2) | C6—H6 | 0.9300 |
N1—H1N | 0.8600 | C7—C8 | 1.489 (2) |
N2—N3 | 1.264 (2) | C9—C10 | 1.510 (2) |
N2—C1 | 1.423 (2) | C9—H9A | 0.9700 |
N3—N4 | 1.131 (2) | C9—H9B | 0.9700 |
C2—C3 | 1.395 (2) | C10—H10A | 0.9600 |
C2—C7 | 1.421 (2) | C10—H10B | 0.9600 |
C3—C4 | 1.380 (2) | C10—H10C | 0.9600 |
C3—H3 | 0.9300 | ||
C8—O2—C9 | 116.17 (13) | C5—C6—C7 | 121.66 (18) |
C1—N1—C2 | 129.11 (14) | C5—C6—H6 | 119.2 |
C1—N1—H1N | 115.4 | C7—C6—H6 | 119.2 |
C2—N1—H1N | 115.4 | C6—C7—C2 | 118.78 (15) |
N3—N2—C1 | 112.16 (14) | C6—C7—C8 | 119.97 (16) |
N4—N3—N2 | 174.74 (18) | C2—C7—C8 | 121.23 (15) |
O3—C1—N1 | 128.37 (16) | O1—C8—O2 | 122.55 (16) |
O3—C1—N2 | 123.62 (17) | O1—C8—C7 | 125.65 (17) |
N1—C1—N2 | 108.01 (15) | O2—C8—C7 | 111.80 (16) |
C3—C2—N1 | 122.27 (16) | O2—C9—C10 | 106.76 (15) |
C3—C2—C7 | 119.00 (16) | O2—C9—H9A | 110.4 |
N1—C2—C7 | 118.72 (14) | C10—C9—H9A | 110.4 |
C4—C3—C2 | 120.35 (17) | O2—C9—H9B | 110.4 |
C4—C3—H3 | 119.8 | C10—C9—H9B | 110.4 |
C2—C3—H3 | 119.8 | H9A—C9—H9B | 108.6 |
C3—C4—C5 | 121.13 (17) | C9—C10—H10A | 109.5 |
C3—C4—H4 | 119.4 | C9—C10—H10B | 109.5 |
C5—C4—H4 | 119.4 | H10A—C10—H10B | 109.5 |
C6—C5—C4 | 119.07 (17) | C9—C10—H10C | 109.5 |
C6—C5—H5 | 120.5 | H10A—C10—H10C | 109.5 |
C4—C5—H5 | 120.5 | H10B—C10—H10C | 109.5 |
Acknowledgements
The authors thank the Unit of Catalysis and Chemistry of Solid (UCCS) UMR CNRS 8181–Lille for the X-ray measurements and for financial support.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Katritzky, A. R., Widyan, K. & Kirichenko, K. J. (2007). J. Org. Chem. 72, 5802–5804. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.