organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-[(azido­carbon­yl)amino]­benzoate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique et Analytique, University Sultan Moulay Slimane, Faculty of Science and Technology, BP 523, Beni-Mellal, Morocco, bUniv. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unite de Catalyse et Chimie du Solide, F-59000 Lille, France, and cLaboratoire de Spectro-Chimie Applique et Environnement, University Sultan Moulay Slimane, Faculty of Science and Technology, BP 523, Beni-Mellal, Morocco
*Correspondence e-mail: hasna.yassine@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 July 2016; accepted 15 July 2016; online 22 July 2016)

In the almost planar (r.m.s. deviation = 0.038 Å) title compound, C10H10N4O3, an intra­molecular N—H⋯O inter­action closes an S(6) ring. In the crystal, aromatic ππ stacking inter­actions occur [inter-centroid distance = 3.65 (2) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Direct conversion of carb­oxy­lic acids to acyl azides can be achieved by using di­phenyl­phosphoryl azide (DPPA) in the presence of a base (Katritzky et al., 2007[Katritzky, A. R., Widyan, K. & Kirichenko, K. J. (2007). J. Org. Chem. 72, 5802-5804.]). In an attempt to synthesize ethyl 2-iso­cyanato­benzoate, the title compound was formed and its structure is reported here.

The mol­ecular structure is shown in Fig. 1[link]. The mol­ecule is approximately planar, with an r.m.s. deviation of 0.038 Å for the non-H atoms. The geometry of the azide group is normal for covalent azide groups, with longer Nα—Nβ distances [N2—N3 = 1.264 (2) Å] and shorter terminal Nβ—Nγ distances [N3—N4 = 1.131 (2) Å], with more triple-bond character. The azide angle is slightly bent [N2—N3—N4 = 174.7 (2)°]. An intra­molecular N—H⋯O inter­action closes an S(6) ring (Table 1[link] and Fig. 1[link]). Aromatic ππ stacking inter­actions occur in the crystal [inter-centroid distance = 3.653 (2) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.86 1.95 2.6593 (19) 139
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. The intra­molecular hydrogen bond is drawn as a dashed line.

Synthesis and crystallization

A solution of 2-(eth­oxy­carbon­yl) benzoic acid (100 mg, 0.53 mmol), DPPA (0.194 ml, 0.90 mmol) and Et3N (0.127 ml, 0.90 mmol) in toluene (5 ml) was refluxed for 4 h. After cooling to room temperature, the reaction mixture was concentrated. The residue was purified by column chromatography using EtOAc–hexane (1:9 v/v) as eluent to give purple parallelepiped-shaped crystals (yield 71%, m.p. = 337 K).

1H NMR (300 MHz, CDCl3): δ 1.37 (3H, H10), 4.40 (2H, H9), 7.13 (1H, H5), 7.58 (1H, H4), 8.06 (1H, H3), 8.51 (1H, H6), 10.90 (1H, NH).

13C NMR (75 MHz, CDCl3): δ 14.17 (C10), 61.62 (C9), 115.50 (C7), 119.52 (C3), 122.83 (C5), 130.94 (C6), 134.62 (C4), 140.64 (C2), 154.43 (C1), 167.98 (C8)

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The reflection [\overline{3}]39 was removed during refinement due to poor agreement.

Table 2
Experimental details

Crystal data
Chemical formula C10H10N4O3
Mr 234.22
Crystal system, space group Monoclinic, C2/c
Temperature (K) 300
a, b, c (Å) 9.330 (6), 18.724 (4), 13.484 (3)
β (°) 102.898 (8)
V3) 2296.3 (17)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.32 × 0.24 × 0.17
 
Data collection
Diffractometer Bruker DUO APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.695, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16533, 2352, 1302
Rint 0.038
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.096, 1.61
No. of reflections 2352
No. of parameters 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.15
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Ethyl 2-[(azidocarbonyl)amino]benzoate top
Crystal data top
C10H10N4O3F(000) = 976
Mr = 234.22Dx = 1.355 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 9.330 (6) ÅCell parameters from 2352 reflections
b = 18.724 (4) Åθ = 2.2–26.4°
c = 13.484 (3) ŵ = 0.10 mm1
β = 102.898 (8)°T = 300 K
V = 2296.3 (17) Å3Parallelepiped, purple
Z = 80.32 × 0.24 × 0.17 mm
Data collection top
Bruker DUO APEXII CCD
diffractometer
1302 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 26.4°, θmin = 2.2°
Tmin = 0.695, Tmax = 0.746h = 1111
16533 measured reflectionsk = 2223
2352 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.022P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.61(Δ/σ)max < 0.001
2352 reflectionsΔρmax = 0.14 e Å3
154 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.03497 (14)0.23713 (7)0.00286 (9)0.0749 (4)
O21.00146 (14)0.35584 (6)0.00214 (9)0.0742 (4)
O30.80897 (14)0.07009 (6)0.20144 (9)0.0828 (4)
N10.89748 (15)0.15816 (8)0.11107 (10)0.0644 (4)
H1N0.94790.16240.06520.077*
N20.94011 (18)0.04318 (9)0.07886 (11)0.0757 (5)
N30.92839 (18)0.02151 (11)0.10254 (11)0.0760 (5)
N40.9226 (2)0.08071 (11)0.11767 (14)0.1044 (7)
C10.87368 (19)0.09018 (11)0.13835 (12)0.0608 (5)
C20.85122 (18)0.22285 (9)0.14731 (12)0.0570 (5)
C30.7684 (2)0.22489 (10)0.22159 (13)0.0672 (5)
H30.74180.18250.24870.081*
C40.7258 (2)0.28947 (11)0.25512 (14)0.0763 (6)
H40.67060.29000.30470.092*
C50.7638 (2)0.35352 (11)0.21619 (14)0.0787 (6)
H50.73470.39680.23940.094*
C60.8451 (2)0.35222 (10)0.14275 (13)0.0708 (5)
H60.87050.39510.11650.085*
C70.89052 (19)0.28814 (9)0.10673 (11)0.0581 (5)
C80.9820 (2)0.28912 (10)0.02929 (12)0.0604 (5)
C91.0927 (2)0.36288 (10)0.07630 (14)0.0796 (6)
H9A1.05020.33630.13760.096*
H9B1.19070.34460.04850.096*
C101.0989 (2)0.44148 (11)0.09986 (16)0.0963 (7)
H10A1.15830.44850.14870.144*
H10B1.00130.45880.12720.144*
H10C1.14110.46710.03860.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0898 (10)0.0688 (9)0.0801 (9)0.0021 (7)0.0486 (8)0.0069 (7)
O20.0891 (10)0.0708 (9)0.0754 (8)0.0005 (7)0.0455 (7)0.0005 (7)
O30.0948 (10)0.0884 (10)0.0811 (9)0.0028 (8)0.0532 (8)0.0071 (7)
N10.0729 (11)0.0685 (11)0.0612 (9)0.0005 (9)0.0347 (8)0.0029 (8)
N20.1067 (14)0.0605 (11)0.0740 (10)0.0056 (10)0.0501 (10)0.0004 (8)
N30.0918 (13)0.0790 (13)0.0691 (10)0.0015 (11)0.0436 (9)0.0044 (10)
N40.1434 (19)0.0794 (14)0.1117 (15)0.0070 (13)0.0739 (13)0.0190 (12)
C10.0625 (12)0.0719 (14)0.0529 (10)0.0017 (10)0.0229 (10)0.0007 (9)
C20.0504 (11)0.0710 (13)0.0514 (10)0.0027 (10)0.0152 (9)0.0057 (9)
C30.0635 (13)0.0816 (14)0.0625 (11)0.0027 (10)0.0270 (10)0.0004 (10)
C40.0696 (14)0.0977 (17)0.0702 (12)0.0097 (12)0.0342 (11)0.0065 (12)
C50.0806 (15)0.0854 (16)0.0789 (13)0.0172 (12)0.0363 (11)0.0081 (11)
C60.0752 (14)0.0730 (14)0.0698 (12)0.0075 (11)0.0283 (11)0.0012 (10)
C70.0561 (12)0.0701 (13)0.0513 (10)0.0046 (10)0.0188 (9)0.0027 (9)
C80.0617 (13)0.0654 (14)0.0561 (11)0.0015 (10)0.0173 (10)0.0002 (10)
C90.0885 (15)0.0813 (15)0.0833 (13)0.0096 (12)0.0495 (12)0.0035 (11)
C100.1081 (18)0.0911 (17)0.1038 (16)0.0088 (14)0.0540 (14)0.0110 (12)
Geometric parameters (Å, º) top
O1—C81.2147 (19)C4—C51.387 (2)
O2—C81.3445 (19)C4—H40.9300
O2—C91.4566 (19)C5—C61.376 (2)
O3—C11.2079 (18)C5—H50.9300
N1—C11.357 (2)C6—C71.395 (2)
N1—C21.409 (2)C6—H60.9300
N1—H1N0.8600C7—C81.489 (2)
N2—N31.264 (2)C9—C101.510 (2)
N2—C11.423 (2)C9—H9A0.9700
N3—N41.131 (2)C9—H9B0.9700
C2—C31.395 (2)C10—H10A0.9600
C2—C71.421 (2)C10—H10B0.9600
C3—C41.380 (2)C10—H10C0.9600
C3—H30.9300
C8—O2—C9116.17 (13)C5—C6—C7121.66 (18)
C1—N1—C2129.11 (14)C5—C6—H6119.2
C1—N1—H1N115.4C7—C6—H6119.2
C2—N1—H1N115.4C6—C7—C2118.78 (15)
N3—N2—C1112.16 (14)C6—C7—C8119.97 (16)
N4—N3—N2174.74 (18)C2—C7—C8121.23 (15)
O3—C1—N1128.37 (16)O1—C8—O2122.55 (16)
O3—C1—N2123.62 (17)O1—C8—C7125.65 (17)
N1—C1—N2108.01 (15)O2—C8—C7111.80 (16)
C3—C2—N1122.27 (16)O2—C9—C10106.76 (15)
C3—C2—C7119.00 (16)O2—C9—H9A110.4
N1—C2—C7118.72 (14)C10—C9—H9A110.4
C4—C3—C2120.35 (17)O2—C9—H9B110.4
C4—C3—H3119.8C10—C9—H9B110.4
C2—C3—H3119.8H9A—C9—H9B108.6
C3—C4—C5121.13 (17)C9—C10—H10A109.5
C3—C4—H4119.4C9—C10—H10B109.5
C5—C4—H4119.4H10A—C10—H10B109.5
C6—C5—C4119.07 (17)C9—C10—H10C109.5
C6—C5—H5120.5H10A—C10—H10C109.5
C4—C5—H5120.5H10B—C10—H10C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.861.952.6593 (19)139
 

Acknowledgements

The authors thank the Unit of Catalysis and Chemistry of Solid (UCCS) UMR CNRS 8181–Lille for the X-ray measurements and for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., Widyan, K. & Kirichenko, K. J. (2007). J. Org. Chem. 72, 5802–5804.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds