organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 1-benzyl-2-(3-chloro­phen­yl)-1H-benzimidazole-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aPURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, bDepartment of Physics, Bharathi Composite PU College, Bharthi Nagara, Mandya 571 422, India, cDepartment of Chemistry, Mangalore University, Mangaluru 574 199, India, dPG Department of Chemistry, SDM College (Autonomous), Ujire, India 574 240, India, eDepartment of Material Science, Mangalore University, Mangaluru 574 199, India, and fDepartment of Physics, Faculty of Science, An Najah National, University, Nabtus, West Bank, Palestinian Territories
*Correspondence e-mail: muneer@najah.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 June 2016; accepted 1 July 2016; online 12 July 2016)

In the title compound, C23H19ClN2O2, the dihedral angles between the imidazole ring system and the chloro­benzene and phenyl rings are 48.05 (14) and 82.53 (15)°, respectively. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(22) loops. Weak C—H⋯π and ππ stacking inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our research on the synthesis and crystal structures of 1,2-disubstituted benzimidazole-5-carboxyl­ates, we report here the crystal and mol­ecular structure of ethyl 1-benzyl-2-(3-chloro­phen­yl)-1H-benzimidazole-5-carboxyl­ate, (I). The mol­ecular structure of (I) is shown in Fig. 1[link] and the dihedral angle between the chloro­benzene (C11–C16) and phenyl (C1–C6) rings is 74.06 (18)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I), showing 50% displacement ellipsods.

In the crystal (Fig. 2[link]), mol­ecules are linked into inversion dimers through pairs of C1—H1⋯O2 hydrogen bonds, forming an [R_{2}^{2}](22) loop (Table 1[link]) and a weak C—H⋯π bond is observed. Aromatic ππ stacking, with a centroid–centroid distance of 3.866 (2) Å [Cg1⋯Cg2, where Cg1 and Cg2(−x + 2, y + [{1\over 2}], −z + [{1\over 2}]) are the centroids of rings N1/C8/C9/N2/C10 and C1–C6, respectively], also occurs.

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.93 2.54 3.358 (4) 148
C20—H20⋯Cg4ii 0.93 2.87 3.757 (4) 159
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The packing of (I), viewed down [001].

Synthesis and crystallization

Sodium di­thio­nite (3.0 equivalents) was added to a stirred solution of ethyl 4-benzyl­amino-3-nitro­benzoate (0.01 mol, 1.0 equivalent) and 3-chloro­benzaldehyde (0.01 mol, 1.0 equivalent) in DMSO (20 ml). The reaction mixture was stirred at 363 K for 3 h. After completion of the reaction (monitored by TLC; hexa­ne–ethyl acetate 7:3 v/v), it was poured onto crushed ice. The solid separated was filtered off, washed with water and dried. The product was recrystallized from N,N-dimethyformamide solution to yield colourless blocks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H19ClN2O2
Mr 390.85
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.145 (3), 9.878 (2), 18.355 (4)
β (°) 93.952 (7)
V3) 2015.9 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.32 × 0.26 × 0.21
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (NUMABS; Rigaku 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.935, 0.957
No. of measured, independent and observed [I > 2σ(I)] reflections 14125, 4498, 2287
Rint 0.048
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.185, 1.04
No. of reflections 4498
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.29
Computer programs: CrystalClear SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear SM Expert (Rigaku, 2011); cell refinement: CrystalClear SM Expert (Rigaku, 2011); data reduction: CrystalClear SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl 1-benzyl-2-(3-chlorophenyl)-1H-benzimidazole-5-carboxylate top
Crystal data top
C23H19ClN2O2F(000) = 816
Mr = 390.85Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 11.145 (3) ÅCell parameters from 4498 reflections
b = 9.878 (2) Åθ = 3.0–27.5°
c = 18.355 (4) ŵ = 0.21 mm1
β = 93.952 (7)°T = 296 K
V = 2015.9 (8) Å3Block, colourless
Z = 40.32 × 0.26 × 0.21 mm
Data collection top
Rigaku Saturn724+
diffractometer
Rint = 0.048
profile data from ω–scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(NUMABS; Rigaku 1999)
h = 1414
Tmin = 0.935, Tmax = 0.957k = 1212
14125 measured reflectionsl = 2323
4498 independent reflections4498 standard reflections
2287 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H-atom parameters constrained
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.0581P)2 + 1.0114P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4498 reflectionsΔρmax = 0.22 e Å3
254 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51971 (9)0.95208 (12)0.21673 (7)0.1007 (4)
O11.3420 (2)0.3900 (3)0.50007 (13)0.0834 (8)
N10.9704 (2)0.7556 (3)0.32335 (13)0.0537 (6)
C60.8897 (3)0.6538 (3)0.20635 (16)0.0509 (8)
C91.0335 (3)0.7003 (3)0.43583 (16)0.0534 (8)
C81.0530 (3)0.6769 (3)0.36265 (16)0.0520 (8)
N20.9413 (2)0.7933 (3)0.44078 (15)0.0626 (7)
C171.1037 (3)0.6343 (3)0.48961 (17)0.0595 (8)
H171.09190.64820.53870.071*
C181.1919 (3)0.5472 (3)0.46873 (17)0.0562 (8)
C70.9609 (3)0.7653 (3)0.24414 (16)0.0585 (8)
H7A1.04130.76520.22700.070*
H7B0.92380.85120.23030.070*
C160.7209 (3)0.8924 (3)0.30033 (18)0.0627 (9)
H160.71980.80980.27600.075*
C211.2678 (3)0.4790 (4)0.5267 (2)0.0688 (10)
C110.8119 (3)0.9214 (3)0.35294 (18)0.0582 (8)
C201.1417 (3)0.5909 (3)0.34119 (17)0.0586 (8)
H201.15410.57700.29220.070*
C50.8807 (3)0.6533 (4)0.13092 (18)0.0727 (10)
H50.91780.72160.10580.087*
O21.2644 (3)0.5004 (3)0.59070 (15)0.1004 (10)
C100.9073 (3)0.8236 (3)0.37328 (18)0.0555 (8)
C191.2099 (3)0.5275 (3)0.39501 (18)0.0611 (9)
H191.27050.46910.38230.073*
C10.8341 (3)0.5539 (3)0.24296 (18)0.0608 (9)
H10.83860.55320.29370.073*
C120.8114 (3)1.0456 (3)0.3880 (2)0.0725 (10)
H120.87211.06650.42360.087*
C140.6328 (4)1.1091 (4)0.3193 (2)0.0830 (12)
H140.57271.17250.30790.100*
C20.7709 (3)0.4538 (4)0.2039 (2)0.0799 (11)
H20.73240.38580.22840.096*
C150.6316 (3)0.9865 (4)0.2840 (2)0.0687 (10)
C30.7650 (4)0.4553 (5)0.1288 (3)0.0900 (13)
H30.72390.38710.10260.108*
C40.8189 (4)0.5554 (5)0.0930 (2)0.0959 (14)
H40.81350.55700.04220.115*
C130.7226 (4)1.1370 (4)0.3709 (2)0.0867 (12)
H130.72351.22000.39490.104*
C221.4205 (4)0.3153 (5)0.5511 (2)0.1122 (16)
H22A1.47970.37560.57500.135*
H22B1.37450.27420.58820.135*
C231.4792 (6)0.2127 (7)0.5113 (4)0.184 (3)
H23A1.52190.25420.47350.276*
H23B1.42020.15110.48990.276*
H23C1.53480.16420.54390.276*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0690 (6)0.1118 (9)0.1198 (10)0.0021 (6)0.0056 (6)0.0058 (7)
O10.0883 (18)0.0881 (18)0.0733 (17)0.0306 (15)0.0018 (14)0.0091 (14)
N10.0645 (16)0.0493 (15)0.0478 (15)0.0035 (13)0.0081 (13)0.0047 (12)
C60.0536 (17)0.055 (2)0.0442 (18)0.0093 (15)0.0078 (14)0.0019 (15)
C90.0639 (19)0.0501 (19)0.0470 (19)0.0026 (16)0.0088 (15)0.0090 (15)
C80.0611 (19)0.0429 (18)0.0520 (19)0.0000 (15)0.0041 (15)0.0054 (15)
N20.0725 (18)0.0609 (18)0.0551 (18)0.0096 (14)0.0101 (14)0.0090 (14)
C170.068 (2)0.066 (2)0.0446 (18)0.0028 (18)0.0066 (16)0.0067 (16)
C180.0587 (19)0.057 (2)0.053 (2)0.0003 (16)0.0030 (15)0.0002 (16)
C70.067 (2)0.059 (2)0.0499 (19)0.0057 (17)0.0119 (16)0.0058 (16)
C160.066 (2)0.053 (2)0.071 (2)0.0004 (17)0.0182 (18)0.0003 (17)
C210.075 (2)0.070 (2)0.061 (2)0.002 (2)0.004 (2)0.0052 (19)
C110.065 (2)0.050 (2)0.061 (2)0.0029 (16)0.0153 (17)0.0004 (16)
C200.072 (2)0.057 (2)0.0472 (19)0.0066 (17)0.0067 (16)0.0095 (16)
C50.082 (2)0.088 (3)0.049 (2)0.003 (2)0.0085 (18)0.005 (2)
O20.118 (2)0.128 (3)0.0543 (17)0.0326 (19)0.0011 (15)0.0054 (16)
C100.066 (2)0.0480 (19)0.054 (2)0.0010 (16)0.0112 (16)0.0060 (16)
C190.068 (2)0.057 (2)0.059 (2)0.0052 (17)0.0108 (17)0.0074 (17)
C10.068 (2)0.062 (2)0.0523 (19)0.0029 (18)0.0063 (16)0.0027 (17)
C120.078 (2)0.059 (2)0.081 (3)0.0066 (19)0.011 (2)0.008 (2)
C140.079 (3)0.065 (3)0.107 (3)0.022 (2)0.017 (2)0.007 (2)
C20.069 (2)0.070 (3)0.101 (3)0.002 (2)0.011 (2)0.001 (2)
C150.058 (2)0.071 (3)0.079 (2)0.0002 (18)0.0146 (18)0.009 (2)
C30.078 (3)0.103 (4)0.086 (3)0.005 (2)0.021 (2)0.032 (3)
C40.106 (3)0.123 (4)0.057 (3)0.005 (3)0.007 (2)0.014 (3)
C130.089 (3)0.064 (3)0.107 (3)0.017 (2)0.003 (3)0.017 (2)
C220.119 (4)0.121 (4)0.095 (3)0.039 (3)0.010 (3)0.027 (3)
C230.165 (6)0.183 (6)0.194 (7)0.103 (5)0.066 (5)0.041 (5)
Geometric parameters (Å, º) top
Cl1—C151.728 (4)C11—C121.386 (4)
O1—C211.324 (4)C20—H200.9300
O1—C221.440 (4)C20—C191.357 (4)
N1—C81.372 (4)C5—H50.9300
N1—C71.454 (4)C5—C41.352 (5)
N1—C101.369 (4)C19—H190.9300
C6—C71.499 (4)C1—H10.9300
C6—C51.381 (4)C1—C21.385 (5)
C6—C11.367 (4)C12—H120.9300
C9—C81.395 (4)C12—C131.360 (5)
C9—N21.387 (4)C14—H140.9300
C9—C171.380 (4)C14—C151.373 (5)
C8—C201.381 (4)C14—C131.359 (5)
N2—C101.305 (4)C2—H20.9300
C17—H170.9300C2—C31.375 (5)
C17—C181.380 (4)C3—H30.9300
C18—C211.475 (5)C3—C41.351 (6)
C18—C191.395 (4)C4—H40.9300
C7—H7A0.9700C13—H130.9300
C7—H7B0.9700C22—H22A0.9700
C16—H160.9300C22—H22B0.9700
C16—C111.381 (4)C22—C231.433 (7)
C16—C151.379 (5)C23—H23A0.9600
C21—O21.197 (4)C23—H23B0.9600
C11—C101.465 (4)C23—H23C0.9600
C21—O1—C22117.9 (3)N2—C10—N1113.2 (3)
C8—N1—C7124.3 (3)N2—C10—C11123.4 (3)
C10—N1—C8106.5 (3)C18—C19—H19119.0
C10—N1—C7129.2 (3)C20—C19—C18122.1 (3)
C5—C6—C7117.8 (3)C20—C19—H19119.0
C1—C6—C7123.1 (3)C6—C1—H1120.2
C1—C6—C5119.1 (3)C6—C1—C2119.5 (3)
N2—C9—C8109.8 (3)C2—C1—H1120.2
C17—C9—C8119.5 (3)C11—C12—H12119.8
C17—C9—N2130.7 (3)C13—C12—C11120.5 (4)
N1—C8—C9105.6 (3)C13—C12—H12119.8
N1—C8—C20131.8 (3)C15—C14—H14120.3
C20—C8—C9122.6 (3)C13—C14—H14120.3
C10—N2—C9104.9 (2)C13—C14—C15119.4 (4)
C9—C17—H17120.8C1—C2—H2120.0
C9—C17—C18118.4 (3)C3—C2—C1119.9 (4)
C18—C17—H17120.8C3—C2—H2120.0
C17—C18—C21117.9 (3)C16—C15—Cl1119.8 (3)
C17—C18—C19120.6 (3)C14—C15—Cl1119.6 (3)
C19—C18—C21121.5 (3)C14—C15—C16120.6 (4)
N1—C7—C6114.5 (3)C2—C3—H3119.9
N1—C7—H7A108.6C4—C3—C2120.2 (4)
N1—C7—H7B108.6C4—C3—H3119.9
C6—C7—H7A108.6C5—C4—H4120.0
C6—C7—H7B108.6C3—C4—C5120.1 (4)
H7A—C7—H7B107.6C3—C4—H4120.0
C11—C16—H16120.1C12—C13—H13119.5
C15—C16—H16120.1C14—C13—C12121.0 (4)
C15—C16—C11119.8 (3)C14—C13—H13119.5
O1—C21—C18112.3 (3)O1—C22—H22A110.1
O2—C21—O1122.8 (3)O1—C22—H22B110.1
O2—C21—C18124.9 (4)H22A—C22—H22B108.4
C16—C11—C10121.8 (3)C23—C22—O1108.0 (4)
C16—C11—C12118.8 (3)C23—C22—H22A110.1
C12—C11—C10119.4 (3)C23—C22—H22B110.1
C8—C20—H20121.6C22—C23—H23A109.5
C19—C20—C8116.9 (3)C22—C23—H23B109.5
C19—C20—H20121.6C22—C23—H23C109.5
C6—C5—H5119.4H23A—C23—H23B109.5
C4—C5—C6121.2 (4)H23A—C23—H23C109.5
C4—C5—H5119.4H23B—C23—H23C109.5
N1—C10—C11123.4 (3)
N1—C8—C20—C19179.6 (3)C16—C11—C10—N148.3 (5)
C6—C5—C4—C30.3 (6)C16—C11—C10—N2132.2 (3)
C6—C1—C2—C30.3 (5)C16—C11—C12—C130.0 (5)
C9—C8—C20—C190.7 (5)C21—O1—C22—C23171.8 (5)
C9—N2—C10—N10.6 (4)C21—C18—C19—C20179.2 (3)
C9—N2—C10—C11178.9 (3)C11—C16—C15—Cl1178.5 (2)
C9—C17—C18—C21179.0 (3)C11—C16—C15—C140.4 (5)
C9—C17—C18—C190.5 (5)C11—C12—C13—C140.0 (6)
C8—N1—C7—C683.0 (4)C5—C6—C7—N1177.5 (3)
C8—N1—C10—N21.1 (4)C5—C6—C1—C20.6 (5)
C8—N1—C10—C11178.5 (3)C10—N1—C8—C91.0 (3)
C8—C9—N2—C100.1 (3)C10—N1—C8—C20178.0 (3)
C8—C9—C17—C180.3 (5)C10—N1—C7—C6100.5 (4)
C8—C20—C19—C180.2 (5)C10—C11—C12—C13178.9 (3)
N2—C9—C8—N10.7 (3)C19—C18—C21—O16.7 (5)
N2—C9—C8—C20178.4 (3)C19—C18—C21—O2173.0 (4)
N2—C9—C17—C18178.9 (3)C1—C6—C7—N12.5 (4)
C17—C9—C8—N1179.9 (3)C1—C6—C5—C40.6 (5)
C17—C9—C8—C200.9 (5)C1—C2—C3—C41.2 (6)
C17—C9—N2—C10179.4 (3)C12—C11—C10—N1132.8 (3)
C17—C18—C21—O1174.8 (3)C12—C11—C10—N246.6 (5)
C17—C18—C21—O25.5 (5)C2—C3—C4—C51.2 (7)
C17—C18—C19—C200.7 (5)C15—C16—C11—C10178.6 (3)
C7—N1—C8—C9178.2 (3)C15—C16—C11—C120.3 (5)
C7—N1—C8—C200.9 (5)C15—C14—C13—C120.2 (6)
C7—N1—C10—N2178.0 (3)C13—C14—C15—Cl1178.4 (3)
C7—N1—C10—C111.5 (5)C13—C14—C15—C160.4 (6)
C7—C6—C5—C4179.4 (3)C22—O1—C21—C18179.5 (3)
C7—C6—C1—C2179.5 (3)C22—O1—C21—O20.8 (6)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.543.358 (4)148
C20—H20···Cg4ii0.932.873.757 (4)159
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

The Authors thank DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds