organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-[(5Z)-5-(4-meth­­oxy­benzyl­­idene)-2,4-dioxo-1,3-thia­zolidin-3-yl]acetate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie des Plantes et de Synthese Organique et Bioorganique, Faculty of Sciences, Mohammed V University, Rabat, Morocco, bLaboratoire National de Controle des Medicaments, D M P, Ministere de la Santé, Madinat Al Irfane, BP, Rabat, Morocco, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and dLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: yramli76@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 June 2016; accepted 27 June 2016; online 5 July 2016)

In the title compound, C15H15NO5S, the benzene and heterocyclic rings are close to being coplanar [dihedral angle = 1.49 (6)°]. In the crystal, pairwise C—H⋯O hydrogen bonds form dimers, which are arranged into `stair-step' rows by way of C=O–π inter­actions between a carbonyl group and the benzene ring [O⋯π = 3.3837 (12) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our studies of the structures of thia­zolidine-2,4-dione derivatives (Karrouchi et al., 2016[Karrouchi, K., Tachallait, H., Bougrin, K., Mague, J. T. & Ramli, Y. (2016). IUCrData, 1, x160851.]), we report on the N-alkyl­ation of 5-(4 meth­oxy­benzyl­idene)thia­zolidine-2,4-dione with ethyl bromo­acetate which gave title compound (Fig. 1[link]) which was characterized by single-crystal X-ray diffraction.

[Figure 1]
Figure 1
The title mol­ecule, showing the atom-labelling scheme and 50% probability displacement ellipsoids.

The benzene ring and the heterocyclic ring (r.m.s. deviation = 0.018 Å) are close to being coplanar, the dihedral angle between their mean planes being 1.49 (6)°. In the crystal, the mol­ecules form dimers via pairwise C8—H8⋯O2i [symmetry code: (i) −x, −y + 1, −z + 1] hydrogen bonds (Table 1[link] and Fig. 2[link]). These units are formed into `stair-step' rows through C=O–π inter­actions between the C10=O2 carbonyl group and the benzene ring at (∓x, y, z) [O⋯π = 3.370 (1) Å and C=O⋯π = 83.56 (8)°] (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.95 2.42 3.3157 (15) 156
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 2]
Figure 2
The packing, viewed along the b axis, with complementary C—H⋯O hydrogen bonds shown as dotted lines.
[Figure 3]
Figure 3
Detail of the complementary C=O–π stacking between one carbonyl group and the benzene ring in an adjacent mol­ecule.

Synthesis and crystallization

To a solution of 5-(4-meth­oxy­benzyl­idene)thia­zolidine-2,4-dione (1 mmol) in acetone (30 ml) an excess of tri­ethyl­amine (1.5 mmol) was added and the mixture was stirred for 10 min at 25°C. Ethyl bromo­acetate (1.5 mmol) was added slowly and the reaction mixture was refluxed for 10 h. The progress was monitored by TLC and, when complete, the reaction mixture was cooled to room temperature, filtered and the volatiles removed under reduced pressure. The residue was dissolved in ethanol, concentrated and cooled to afford crystals which were filtered off, washed with ethanol and recrystallized from ethanol solution. Yield 84%; m.p. 130–132°C.

Refinement

Details of crystal data and refinement are presented in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H15NO5S
Mr 321.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 6.1957 (2), 10.6460 (3), 12.2909 (3)
α, β, γ (°) 68.845 (1), 78.971 (1), 84.919 (1)
V3) 741.93 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.16
Crystal size (mm) 0.21 × 0.11 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.80, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 10428, 2884, 2690
Rint 0.027
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.05
No. of reflections 2884
No. of parameters 202
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.23
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 2-[(5Z)-5-(4-methoxybenzylidene)-2,4-dioxo-1,3-thiazolidin-3-yl]acetate top
Crystal data top
C15H15NO5SZ = 2
Mr = 321.34F(000) = 336
Triclinic, P1Dx = 1.438 Mg m3
a = 6.1957 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.6460 (3) ÅCell parameters from 8632 reflections
c = 12.2909 (3) Åθ = 3.9–72.0°
α = 68.845 (1)°µ = 2.16 mm1
β = 78.971 (1)°T = 150 K
γ = 84.919 (1)°Plate, colourless
V = 741.93 (4) Å30.21 × 0.11 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2884 independent reflections
Radiation source: INCOATEC IµS micro–focus source2690 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4167 pixels mm-1θmax = 72.1°, θmin = 3.9°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1213
Tmin = 0.80, Tmax = 0.92l = 1214
10428 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2407P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2884 reflectionsΔρmax = 0.29 e Å3
202 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34156 (5)0.50355 (3)0.12596 (3)0.02452 (11)
O11.10838 (15)0.14727 (10)0.45592 (8)0.0287 (2)
O20.08424 (15)0.60296 (10)0.35429 (8)0.0266 (2)
O30.09830 (17)0.64516 (10)0.03482 (8)0.0320 (2)
O40.01087 (16)0.89843 (10)0.13494 (10)0.0346 (2)
O50.37526 (16)0.92434 (10)0.13243 (11)0.0374 (3)
N10.02628 (17)0.63167 (11)0.15778 (9)0.0230 (2)
C10.5290 (2)0.36877 (12)0.38833 (11)0.0214 (3)
C20.5793 (2)0.32201 (13)0.50296 (11)0.0237 (3)
H20.47990.34210.56400.028*
C30.7695 (2)0.24723 (13)0.53029 (11)0.0249 (3)
H30.79950.21630.60880.030*
C40.9158 (2)0.21833 (13)0.44081 (12)0.0234 (3)
C50.8693 (2)0.26387 (13)0.32566 (12)0.0247 (3)
H50.96930.24400.26480.030*
C60.6797 (2)0.33731 (13)0.30007 (11)0.0234 (3)
H60.64990.36730.22150.028*
C71.1601 (2)0.09656 (15)0.57301 (13)0.0314 (3)
H7A1.30160.04750.57250.047*
H7B1.04480.03560.62680.047*
H7C1.16910.17190.59980.047*
C80.3265 (2)0.44693 (12)0.36890 (11)0.0215 (3)
H80.24160.45930.43750.026*
C90.2398 (2)0.50466 (12)0.26949 (11)0.0211 (3)
C100.0297 (2)0.58171 (12)0.27051 (11)0.0211 (3)
C110.1182 (2)0.60538 (13)0.06821 (11)0.0239 (3)
C120.2200 (2)0.71737 (13)0.13586 (12)0.0256 (3)
H12A0.34610.67650.19840.031*
H12B0.25610.72440.05880.031*
C130.1837 (2)0.85685 (13)0.13435 (11)0.0251 (3)
C140.3745 (3)1.06523 (15)0.12095 (16)0.0402 (4)
H14A0.34471.12330.03630.048*
H14B0.25901.07980.16050.048*
C150.5960 (3)1.09868 (16)0.17802 (16)0.0425 (4)
H15A0.60771.19570.16320.064*
H15B0.61601.04900.26350.064*
H15C0.70981.07340.14480.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02626 (17)0.02999 (18)0.01769 (17)0.00376 (12)0.00117 (11)0.01115 (12)
O10.0259 (5)0.0305 (5)0.0301 (5)0.0060 (4)0.0074 (4)0.0111 (4)
O20.0257 (5)0.0333 (5)0.0208 (5)0.0036 (4)0.0003 (3)0.0125 (4)
O30.0410 (6)0.0357 (5)0.0186 (5)0.0038 (4)0.0062 (4)0.0094 (4)
O40.0270 (5)0.0307 (5)0.0455 (6)0.0021 (4)0.0066 (4)0.0124 (4)
O50.0257 (5)0.0259 (5)0.0628 (7)0.0040 (4)0.0082 (5)0.0190 (5)
N10.0247 (5)0.0243 (5)0.0201 (5)0.0033 (4)0.0044 (4)0.0087 (4)
C10.0219 (6)0.0219 (6)0.0206 (6)0.0025 (5)0.0019 (5)0.0083 (5)
C20.0242 (6)0.0266 (6)0.0208 (6)0.0013 (5)0.0011 (5)0.0102 (5)
C30.0278 (6)0.0263 (6)0.0212 (6)0.0021 (5)0.0056 (5)0.0079 (5)
C40.0216 (6)0.0212 (6)0.0278 (7)0.0006 (5)0.0048 (5)0.0086 (5)
C50.0247 (6)0.0257 (6)0.0234 (6)0.0005 (5)0.0000 (5)0.0107 (5)
C60.0253 (6)0.0250 (6)0.0199 (6)0.0012 (5)0.0026 (5)0.0083 (5)
C70.0311 (7)0.0308 (7)0.0332 (7)0.0034 (5)0.0123 (6)0.0099 (6)
C80.0215 (6)0.0236 (6)0.0198 (6)0.0023 (5)0.0007 (5)0.0095 (5)
C90.0213 (6)0.0228 (6)0.0193 (6)0.0014 (5)0.0010 (4)0.0095 (5)
C100.0228 (6)0.0211 (6)0.0196 (6)0.0019 (5)0.0023 (4)0.0078 (5)
C110.0293 (6)0.0226 (6)0.0202 (6)0.0023 (5)0.0022 (5)0.0086 (5)
C120.0241 (6)0.0267 (7)0.0276 (7)0.0034 (5)0.0075 (5)0.0108 (5)
C130.0249 (6)0.0263 (6)0.0220 (6)0.0013 (5)0.0023 (5)0.0074 (5)
C140.0355 (8)0.0243 (7)0.0595 (10)0.0015 (6)0.0029 (7)0.0162 (7)
C150.0392 (8)0.0338 (8)0.0548 (10)0.0057 (6)0.0022 (7)0.0204 (7)
Geometric parameters (Å, º) top
S1—C91.7602 (12)C4—C51.3989 (18)
S1—C111.7745 (13)C5—C61.3755 (18)
O1—C41.3617 (15)C5—H50.9500
O1—C71.4318 (16)C6—H60.9500
O2—C101.2131 (15)C7—H7A0.9800
O3—C111.2089 (16)C7—H7B0.9800
O4—C131.1966 (17)C7—H7C0.9800
O5—C131.3315 (16)C8—C91.3453 (18)
O5—C141.4553 (17)C8—H80.9500
N1—C111.3757 (16)C9—C101.4763 (17)
N1—C101.3937 (16)C12—C131.5144 (18)
N1—C121.4482 (15)C12—H12A0.9900
C1—C21.4014 (18)C12—H12B0.9900
C1—C61.4070 (17)C14—C151.493 (2)
C1—C81.4523 (17)C14—H14A0.9900
C2—C31.3888 (18)C14—H14B0.9900
C2—H20.9500C15—H15A0.9800
C3—C41.3924 (18)C15—H15B0.9800
C3—H30.9500C15—H15C0.9800
C9—S1—C1192.26 (6)C1—C8—H8114.8
C4—O1—C7117.16 (10)C8—C9—C10120.98 (11)
C13—O5—C14117.70 (11)C8—C9—S1129.07 (10)
C11—N1—C10117.36 (10)C10—C9—S1109.95 (9)
C11—N1—C12122.13 (11)O2—C10—N1122.09 (11)
C10—N1—C12120.30 (10)O2—C10—C9127.40 (11)
C2—C1—C6117.48 (11)N1—C10—C9110.50 (10)
C2—C1—C8117.80 (11)O3—C11—N1125.70 (12)
C6—C1—C8124.71 (11)O3—C11—S1124.43 (10)
C3—C2—C1122.14 (12)N1—C11—S1109.87 (9)
C3—C2—H2118.9N1—C12—C13111.19 (10)
C1—C2—H2118.9N1—C12—H12A109.4
C2—C3—C4118.96 (12)C13—C12—H12A109.4
C2—C3—H3120.5N1—C12—H12B109.4
C4—C3—H3120.5C13—C12—H12B109.4
O1—C4—C3124.62 (12)H12A—C12—H12B108.0
O1—C4—C5115.40 (11)O4—C13—O5126.15 (13)
C3—C4—C5119.98 (12)O4—C13—C12125.21 (12)
C6—C5—C4120.38 (11)O5—C13—C12108.64 (11)
C6—C5—H5119.8O5—C14—C15107.30 (12)
C4—C5—H5119.8O5—C14—H14A110.3
C5—C6—C1121.05 (12)C15—C14—H14A110.3
C5—C6—H6119.5O5—C14—H14B110.3
C1—C6—H6119.5C15—C14—H14B110.3
O1—C7—H7A109.5H14A—C14—H14B108.5
O1—C7—H7B109.5C14—C15—H15A109.5
H7A—C7—H7B109.5C14—C15—H15B109.5
O1—C7—H7C109.5H15A—C15—H15B109.5
H7A—C7—H7C109.5C14—C15—H15C109.5
H7B—C7—H7C109.5H15A—C15—H15C109.5
C9—C8—C1130.43 (11)H15B—C15—H15C109.5
C9—C8—H8114.8
C6—C1—C2—C30.04 (19)C11—N1—C10—C91.53 (15)
C8—C1—C2—C3179.58 (11)C12—N1—C10—C9176.34 (10)
C1—C2—C3—C40.3 (2)C8—C9—C10—O20.6 (2)
C7—O1—C4—C31.50 (19)S1—C9—C10—O2179.72 (11)
C7—O1—C4—C5178.81 (11)C8—C9—C10—N1179.97 (11)
C2—C3—C4—O1179.34 (12)S1—C9—C10—N10.33 (13)
C2—C3—C4—C50.33 (19)C10—N1—C11—O3177.26 (12)
O1—C4—C5—C6179.66 (11)C12—N1—C11—O32.6 (2)
C3—C4—C5—C60.0 (2)C10—N1—C11—S12.64 (14)
C4—C5—C6—C10.3 (2)C12—N1—C11—S1177.35 (9)
C2—C1—C6—C50.26 (19)C9—S1—C11—O3177.61 (12)
C8—C1—C6—C5179.24 (12)C9—S1—C11—N12.30 (10)
C2—C1—C8—C9179.20 (13)C11—N1—C12—C13101.22 (14)
C6—C1—C8—C90.3 (2)C10—N1—C12—C1373.34 (15)
C1—C8—C9—C10179.34 (12)C14—O5—C13—O45.0 (2)
C1—C8—C9—S11.0 (2)C14—O5—C13—C12175.08 (13)
C11—S1—C9—C8178.85 (13)N1—C12—C13—O49.47 (19)
C11—S1—C9—C101.48 (9)N1—C12—C13—O5170.46 (11)
C11—N1—C10—O2177.90 (12)C13—O5—C14—C15152.82 (14)
C12—N1—C10—O23.09 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.952.423.3157 (15)156
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKarrouchi, K., Tachallait, H., Bougrin, K., Mague, J. T. & Ramli, Y. (2016). IUCrData, 1, x160851.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds