organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(4,6-Di­methyl-1-benzo­furan-3-yl)acetic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Govt. First Grade College, Mulbagal, Kolar 563 131, Karnataka, India, bDepartment of Physics, Govt. College for Women, Kolar 563 101, Karnataka, India, cDepartment of Physics, Govt. College for Women, Mandya 571 401, India, and dDepartment of Chemistry, P.C. Jabin Science College, Hubli 580 031, Karnataka, India
*Correspondence e-mail: rkgowdaphy@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 June 2016; accepted 25 June 2016; online 5 July 2016)

In the title compound, C12H12O3, the dihedral angle between the planes of the carb­oxy­lic acid group and the benzo­furan ring system (r.m.s. deviation = 0.012 Å) is 76.53 (10)°. In the crystal, carb­oxy­lic acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(8) loops. C—H⋯O inter­actions link the dimers into (101) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Carb­oxy­lic acids, such as aryl­alkanoic acids, exhibit anti-inflammatory, analgesic and anti­pyretic properties and have been in widespread clinical use for a number of years (Basanagouda et al., 2015[Basanagouda, M., Narayanachar Majati, I. B., Mulimani, S. S., Sunnal, S. B., Nadiger, R. V., Ghanti, A. S., Gudageri, S. F., Naik, R. & Nayak, A. (2015). Synth. Commun. 45, 2195-2202.]). As part of our studies in this area, we now report the crystal structure of the title compound. All the bond lengths and angles are close to those observed for similar structures (Gowda et al., 2015[Gowda, R., Gowda, K. V. A., Reddy, M. K. & Basanagouda, M. (2015). Acta Cryst. E71, o1053-o1054.]; Ramprasad et al., 2016[Ramprasad, N., Gowda, R., Gowda, K. V. A. & Basanagouda, M. (2016). IUCrData, 1, x160170.]).

The X-ray structure of the title mol­ecule (Fig. 1[link]) reveals its non-planar nature; the plane of the acetic acid group makes a dihedral angle of 76.53 (10)° with that of the benzo­furan ring system. The C9—C12 bond length [1.512 (3) Å] reflects the sp2(C1)—sp3(C12) hybridization of these atoms; this is also reflected in the C7—C11 bond length [1.497 (3) Å].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 40% probability displacement ellipsoids.

In the crystal, mol­ecules are linked into carb­oxy­lic acid inversion dimers by pairs of O—H⋯O hydrogen bonds. The dimers are linked into (101) sheets by a very weak C—H⋯O hydrogen bond (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.93 2.58 3.328 (2) 137
O2—H2⋯O1ii 0.82 1.83 2.645 (2) 171
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.
[Figure 2]
Figure 2
The crystal packing diagram of the title compound. The dotted lines indicate inter­molecular hydrogen bonds. H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

4-Bromo­methyl-5,7-di­methyl­coumarin (10 mM) was refluxed in 1 M NaOH (100 ml) for 2 h (the completion of the reaction was monitored by thin-layer chromatography). The reaction mixture was cooled, neutralized with 1 M HCl and the obtained product was filtered off and dried. Colourless blocks were obtained by recrystallization from an ethanol and ethyl acetate solvent mixture by slow evaporation (m.p. 442–443 K) (Basanagouda et al., 2015[Basanagouda, M., Narayanachar Majati, I. B., Mulimani, S. S., Sunnal, S. B., Nadiger, R. V., Ghanti, A. S., Gudageri, S. F., Naik, R. & Nayak, A. (2015). Synth. Commun. 45, 2195-2202.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H12O3
Mr 204.22
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 9.5048 (4), 4.8237 (2), 23.3395 (11)
β (°) 100.829 (2)
V3) 1051.02 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.969, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 15929, 2056, 1581
Rint 0.027
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.129, 1.06
No. of reflections 2056
No. of parameters 139
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

2-(4,6-Dimethyl-1-benzofuran-3-yl)acetic acid top
Crystal data top
C12H12O3Dx = 1.291 Mg m3
Mr = 204.22Melting point = 433–432 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.5048 (4) ÅCell parameters from 4624 reflections
b = 4.8237 (2) Åθ = 2.2–25.6°
c = 23.3395 (11) ŵ = 0.09 mm1
β = 100.829 (2)°T = 293 K
V = 1051.02 (8) Å3Block, colourless
Z = 40.25 × 0.20 × 0.20 mm
F(000) = 432
Data collection top
Bruker axs kappa apex2 CCD
diffractometer
2056 independent reflections
Radiation source: fine-focus sealed tube1581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scanθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.969, Tmax = 0.992k = 55
15929 measured reflectionsl = 2828
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.4386P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.27 e Å3
2056 reflectionsΔρmin = 0.30 e Å3
139 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.021 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6178 (2)0.1293 (4)0.07038 (8)0.0483 (5)
C20.7035 (2)0.2388 (4)0.12645 (9)0.0544 (5)
H2A0.63840.28410.15250.065*
H2B0.75010.40930.11820.065*
C30.81502 (18)0.0435 (4)0.15717 (8)0.0431 (4)
C40.79779 (19)0.1147 (4)0.20245 (8)0.0486 (5)
H40.71500.11450.21830.058*
C51.01240 (18)0.2144 (4)0.18824 (7)0.0391 (4)
C60.95676 (17)0.0184 (3)0.14658 (7)0.0384 (4)
C71.0429 (2)0.0704 (4)0.10711 (8)0.0458 (5)
C81.1781 (2)0.0431 (4)0.11406 (9)0.0540 (5)
H81.23700.01350.08860.065*
C91.23245 (19)0.2375 (4)0.15682 (9)0.0519 (5)
C101.14744 (19)0.3273 (4)0.19488 (8)0.0480 (5)
H101.17980.45800.22370.058*
C110.9921 (3)0.2776 (5)0.06001 (9)0.0667 (6)
H11A0.97180.45020.07730.100*
H11B1.06510.30560.03720.100*
H11C0.90670.20990.03530.100*
C121.3832 (2)0.3480 (6)0.16180 (13)0.0832 (8)
H12A1.41500.31990.12560.125*
H12B1.44590.25170.19240.125*
H12C1.38430.54250.17060.125*
O10.64980 (17)0.0843 (4)0.04769 (7)0.0808 (6)
O20.50928 (17)0.2762 (4)0.04947 (7)0.0828 (6)
H20.46800.20810.01870.124*
O30.91475 (13)0.2772 (3)0.22303 (5)0.0484 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0459 (10)0.0473 (11)0.0473 (10)0.0099 (8)0.0028 (8)0.0048 (8)
C20.0515 (11)0.0519 (11)0.0527 (11)0.0142 (9)0.0087 (9)0.0131 (9)
C30.0398 (9)0.0435 (10)0.0413 (9)0.0045 (7)0.0040 (7)0.0106 (8)
C40.0377 (9)0.0612 (12)0.0459 (10)0.0028 (8)0.0053 (8)0.0064 (9)
C50.0388 (9)0.0427 (9)0.0348 (8)0.0014 (7)0.0038 (7)0.0003 (7)
C60.0412 (9)0.0356 (9)0.0358 (8)0.0002 (7)0.0003 (7)0.0050 (7)
C70.0576 (11)0.0396 (10)0.0392 (9)0.0058 (8)0.0068 (8)0.0018 (8)
C80.0531 (11)0.0596 (12)0.0529 (11)0.0104 (10)0.0192 (9)0.0045 (10)
C90.0405 (10)0.0592 (12)0.0555 (11)0.0007 (9)0.0074 (8)0.0084 (10)
C100.0423 (10)0.0511 (11)0.0471 (10)0.0067 (8)0.0005 (8)0.0018 (8)
C110.0917 (17)0.0557 (13)0.0519 (12)0.0043 (12)0.0110 (11)0.0118 (10)
C120.0465 (12)0.108 (2)0.0973 (19)0.0135 (13)0.0180 (12)0.0074 (16)
O10.0777 (11)0.0734 (11)0.0753 (11)0.0296 (9)0.0270 (8)0.0324 (9)
O20.0786 (11)0.0869 (12)0.0666 (10)0.0386 (9)0.0284 (8)0.0240 (9)
O30.0433 (7)0.0587 (8)0.0435 (7)0.0017 (6)0.0089 (5)0.0080 (6)
Geometric parameters (Å, º) top
C1—O11.223 (2)C7—C81.378 (3)
C1—O21.271 (2)C7—C111.497 (3)
C1—C21.501 (3)C8—C91.396 (3)
C2—C31.497 (2)C8—H80.9300
C2—H2A0.9700C9—C101.378 (3)
C2—H2B0.9700C9—C121.512 (3)
C3—C41.338 (3)C10—H100.9300
C3—C61.446 (2)C11—H11A0.9600
C4—O31.371 (2)C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
C5—C101.376 (2)C12—H12A0.9600
C5—O31.377 (2)C12—H12B0.9600
C5—C61.388 (2)C12—H12C0.9600
C6—C71.409 (2)O2—H20.8200
O1—C1—O2123.60 (18)C7—C8—C9124.24 (18)
O1—C1—C2122.38 (16)C7—C8—H8117.9
O2—C1—C2114.02 (16)C9—C8—H8117.9
C3—C2—C1114.56 (15)C10—C9—C8119.28 (17)
C3—C2—H2A108.6C10—C9—C12120.1 (2)
C1—C2—H2A108.6C8—C9—C12120.6 (2)
C3—C2—H2B108.6C5—C10—C9116.77 (18)
C1—C2—H2B108.6C5—C10—H10121.6
H2A—C2—H2B107.6C9—C10—H10121.6
C4—C3—C6105.86 (15)C7—C11—H11A109.5
C4—C3—C2123.83 (17)C7—C11—H11B109.5
C6—C3—C2130.31 (18)H11A—C11—H11B109.5
C3—C4—O3113.03 (16)C7—C11—H11C109.5
C3—C4—H4123.5H11A—C11—H11C109.5
O3—C4—H4123.5H11B—C11—H11C109.5
C10—C5—O3124.36 (16)C9—C12—H12A109.5
C10—C5—C6124.98 (17)C9—C12—H12B109.5
O3—C5—C6110.65 (15)H12A—C12—H12B109.5
C5—C6—C7118.25 (16)C9—C12—H12C109.5
C5—C6—C3105.41 (15)H12A—C12—H12C109.5
C7—C6—C3136.34 (17)H12B—C12—H12C109.5
C8—C7—C6116.47 (17)C1—O2—H2109.5
C8—C7—C11121.12 (18)C4—O3—C5105.04 (14)
C6—C7—C11122.41 (18)
O1—C1—C2—C39.8 (3)C3—C6—C7—C8178.26 (18)
O2—C1—C2—C3169.37 (19)C5—C6—C7—C11179.04 (16)
C1—C2—C3—C499.9 (2)C3—C6—C7—C111.5 (3)
C1—C2—C3—C680.0 (3)C6—C7—C8—C90.4 (3)
C6—C3—C4—O30.2 (2)C11—C7—C8—C9179.83 (19)
C2—C3—C4—O3179.76 (15)C7—C8—C9—C100.6 (3)
C10—C5—C6—C71.2 (3)C7—C8—C9—C12179.1 (2)
O3—C5—C6—C7179.97 (15)O3—C5—C10—C9178.86 (16)
C10—C5—C6—C3178.44 (17)C6—C5—C10—C90.2 (3)
O3—C5—C6—C30.37 (19)C8—C9—C10—C50.6 (3)
C4—C3—C6—C50.13 (19)C12—C9—C10—C5179.02 (19)
C2—C3—C6—C5179.96 (17)C3—C4—O3—C50.4 (2)
C4—C3—C6—C7179.6 (2)C10—C5—O3—C4178.36 (17)
C2—C3—C6—C70.5 (3)C6—C5—O3—C40.46 (19)
C5—C6—C7—C81.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.583.328 (2)137
O2—H2···O1ii0.821.832.645 (2)171
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

MB thanks UGC–SWRO, Bangalore, for providing a Minor Research Project (reference No. 1415-MRP/14–15/KAKA067/UGC-SWRO, Diary No. 1709). The authors also thank the SAIF IIT Madras, Chennai, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBasanagouda, M., Narayanachar Majati, I. B., Mulimani, S. S., Sunnal, S. B., Nadiger, R. V., Ghanti, A. S., Gudageri, S. F., Naik, R. & Nayak, A. (2015). Synth. Commun. 45, 2195–2202.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGowda, R., Gowda, K. V. A., Reddy, M. K. & Basanagouda, M. (2015). Acta Cryst. E71, o1053–o1054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamprasad, N., Gowda, R., Gowda, K. V. A. & Basanagouda, M. (2016). IUCrData, 1, x160170.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds