organic compounds
3,4-Dimethoxybenzaldehyde
aRadboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
*Correspondence e-mail: p.tinnemans@science.ru.nl
In the title compound, C9H10O3, one of the methoxy C atoms deviates from the plane of the aromatic ring by 0.337 (2) Å. Crystallization was hindered by oiling out in various solvents. The crystal contains neither hydrogen bonds nor aromatic π–π stacking.
Keywords: crystal structure; vanillin derivative; oiling out.
CCDC reference: 1486850
Structure description
The title compound, shown in Fig. 1, has a strong vanilla fragrance. It crystallizes in the orthorhombic Pna21. measurements were performed to screen for polymorphic transitions, but none were observed between 150 K and the melting point of the title compound, 319 K (not shown).
The compound oils out in water and several organic solvents. Similar behaviour has been observed for the closely related molecule vanillin (Svärd et al., 2007). For the of vanillin-I, see: Velavan et al. (1995).
In the crystal, no hydrogen bonds are present.
Synthesis and crystallization
Commercial 3,4-dimethoxybenzaldehyde (99% pure, Aldrich) was used for the crystallization. A few crystals of the commercial powder were added to an aqueous
of 3,4-dimethoxybenzaldehyde at room temperature. Subsequently, the temperature was cycled between 298 and 303 K. After 2 weeks colourless needles were grown, suitable for single-crystal X-ray diffraction.Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1486850
https://doi.org/10.1107/S2414314616010087/hb4058sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616010087/hb4058Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616010087/hb4058Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2414314616010087/hb4058Isup4.cml
Data collection: APEX3 (Bruker, 2012); cell
PEAKREF (Schreurs, 2013); data reduction: SAINT (Bruker, 2012) and SADABS (Bruker, 2001); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009) and ShelXLe (Sheldrick, 2015a).C9H10O3 | Dx = 1.338 Mg m−3 |
Mr = 166.17 | Melting point: 319 K |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
a = 11.374 (2) Å | Cell parameters from 2237 reflections |
b = 14.363 (3) Å | θ = 2.2–30° |
c = 5.050 (2) Å | µ = 0.10 mm−1 |
V = 825.0 (4) Å3 | T = 150 K |
Z = 4 | Needle, colourless |
F(000) = 352 | 0.35 × 0.15 × 0.13 mm |
Bruker D8 Quest APEX3 diffractometer | 2608 independent reflections |
Radiation source: sealed tube | 2237 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
Detector resolution: 10.4 pixels mm-1 | θmax = 31.0°, θmin = 2.3° |
φ and ω scans | h = −16→15 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −20→20 |
Tmin = 0.90, Tmax = 0.99 | l = −7→7 |
34976 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0572P)2 + 0.1158P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2608 reflections | Δρmax = 0.34 e Å−3 |
111 parameters | Δρmin = −0.19 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 930 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.2 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O01 | 0.62471 (10) | 0.74604 (8) | 0.1630 (3) | 0.0242 (3) | |
O02 | 0.51301 (9) | 0.63612 (8) | 0.4799 (3) | 0.0244 (3) | |
O03 | 0.84277 (11) | 0.46485 (8) | 1.0130 (3) | 0.0286 (3) | |
C04 | 0.63269 (12) | 0.63367 (10) | 0.5011 (4) | 0.0177 (3) | |
C05 | 0.69492 (12) | 0.57807 (10) | 0.6762 (4) | 0.0182 (3) | |
H05 | 0.6543 | 0.5369 | 0.7914 | 0.022* | |
C06 | 0.69401 (13) | 0.69467 (10) | 0.3273 (4) | 0.0179 (3) | |
C07 | 0.81632 (13) | 0.69977 (10) | 0.3360 (4) | 0.0200 (3) | |
H07 | 0.8574 | 0.7408 | 0.2212 | 0.024* | |
C08 | 0.88522 (14) | 0.52368 (11) | 0.8669 (4) | 0.0219 (3) | |
H08 | 0.9681 | 0.5319 | 0.8726 | 0.026* | |
C09 | 0.87817 (13) | 0.64383 (10) | 0.5155 (4) | 0.0198 (3) | |
H09 | 0.9615 | 0.6475 | 0.5233 | 0.024* | |
C10 | 0.81847 (12) | 0.58287 (11) | 0.6827 (4) | 0.0181 (3) | |
C11 | 0.44789 (14) | 0.59171 (13) | 0.6874 (4) | 0.0263 (3) | |
H11A | 0.4698 | 0.6191 | 0.8582 | 0.040* | |
H11B | 0.4658 | 0.5250 | 0.6888 | 0.040* | |
H11C | 0.3635 | 0.6007 | 0.6572 | 0.040* | |
C12 | 0.68316 (17) | 0.80898 (11) | −0.0137 (4) | 0.0281 (4) | |
H12A | 0.6248 | 0.8402 | −0.1256 | 0.042* | |
H12B | 0.7382 | 0.7742 | −0.1254 | 0.042* | |
H12C | 0.7264 | 0.8556 | 0.0893 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O01 | 0.0249 (6) | 0.0236 (5) | 0.0242 (6) | 0.0029 (4) | −0.0010 (5) | 0.0068 (5) |
O02 | 0.0146 (5) | 0.0269 (5) | 0.0318 (6) | 0.0019 (4) | −0.0009 (5) | 0.0074 (5) |
O03 | 0.0247 (6) | 0.0284 (6) | 0.0328 (7) | 0.0016 (5) | −0.0036 (6) | 0.0090 (6) |
C04 | 0.0151 (6) | 0.0163 (6) | 0.0217 (7) | 0.0005 (5) | −0.0003 (7) | −0.0014 (6) |
C05 | 0.0170 (6) | 0.0161 (6) | 0.0215 (7) | −0.0003 (5) | 0.0000 (7) | 0.0020 (6) |
C06 | 0.0214 (7) | 0.0157 (6) | 0.0166 (6) | 0.0012 (5) | −0.0013 (6) | −0.0006 (6) |
C07 | 0.0215 (7) | 0.0192 (7) | 0.0193 (7) | −0.0016 (6) | 0.0031 (7) | 0.0001 (6) |
C08 | 0.0165 (7) | 0.0239 (7) | 0.0254 (8) | 0.0014 (6) | −0.0036 (6) | 0.0006 (7) |
C09 | 0.0155 (6) | 0.0219 (7) | 0.0222 (8) | −0.0014 (5) | 0.0001 (6) | −0.0016 (6) |
C10 | 0.0166 (6) | 0.0182 (6) | 0.0194 (7) | 0.0016 (5) | −0.0013 (7) | −0.0022 (6) |
C11 | 0.0153 (6) | 0.0316 (8) | 0.0321 (8) | −0.0009 (6) | 0.0032 (7) | 0.0016 (7) |
C12 | 0.0385 (9) | 0.0213 (7) | 0.0244 (8) | 0.0026 (6) | 0.0012 (8) | 0.0075 (7) |
O01—C06 | 1.361 (2) | C07—H07 | 0.9500 |
O01—C12 | 1.434 (2) | C08—C10 | 1.471 (2) |
O02—C04 | 1.3659 (17) | C08—H08 | 0.9500 |
O02—C11 | 1.433 (2) | C09—C10 | 1.393 (2) |
O03—C08 | 1.221 (2) | C09—H09 | 0.9500 |
C04—C05 | 1.386 (2) | C11—H11A | 0.9800 |
C04—C06 | 1.423 (2) | C11—H11B | 0.9800 |
C05—C10 | 1.4073 (19) | C11—H11C | 0.9800 |
C05—H05 | 0.9500 | C12—H12A | 0.9800 |
C06—C07 | 1.394 (2) | C12—H12B | 0.9800 |
C07—C09 | 1.401 (3) | C12—H12C | 0.9800 |
C06—O01—C12 | 116.90 (14) | C10—C09—H09 | 119.7 |
C04—O02—C11 | 116.51 (14) | C07—C09—H09 | 119.7 |
O02—C04—C05 | 125.02 (15) | C09—C10—C05 | 120.23 (15) |
O02—C04—C06 | 115.10 (14) | C09—C10—C08 | 119.66 (13) |
C05—C04—C06 | 119.88 (12) | C05—C10—C08 | 120.11 (15) |
C04—C05—C10 | 119.78 (14) | O02—C11—H11A | 109.5 |
C04—C05—H05 | 120.1 | O02—C11—H11B | 109.5 |
C10—C05—H05 | 120.1 | H11A—C11—H11B | 109.5 |
O01—C06—C07 | 124.66 (14) | O02—C11—H11C | 109.5 |
O01—C06—C04 | 115.20 (13) | H11A—C11—H11C | 109.5 |
C07—C06—C04 | 120.12 (14) | H11B—C11—H11C | 109.5 |
C06—C07—C09 | 119.45 (15) | O01—C12—H12A | 109.5 |
C06—C07—H07 | 120.3 | O01—C12—H12B | 109.5 |
C09—C07—H07 | 120.3 | H12A—C12—H12B | 109.5 |
O03—C08—C10 | 125.30 (15) | O01—C12—H12C | 109.5 |
O03—C08—H08 | 117.4 | H12A—C12—H12C | 109.5 |
C10—C08—H08 | 117.4 | H12B—C12—H12C | 109.5 |
C10—C09—C07 | 120.53 (14) | ||
C11—O02—C04—C05 | 12.6 (2) | O01—C06—C07—C09 | 179.45 (17) |
C11—O02—C04—C06 | −166.89 (15) | C04—C06—C07—C09 | 0.6 (2) |
O02—C04—C05—C10 | −178.91 (16) | C06—C07—C09—C10 | 0.6 (2) |
C06—C04—C05—C10 | 0.6 (2) | C07—C09—C10—C05 | −1.1 (2) |
C12—O01—C06—C07 | 0.5 (2) | C07—C09—C10—C08 | 179.07 (15) |
C12—O01—C06—C04 | 179.47 (14) | C04—C05—C10—C09 | 0.6 (2) |
O02—C04—C06—O01 | −0.6 (2) | C04—C05—C10—C08 | −179.65 (16) |
C05—C04—C06—O01 | 179.87 (14) | O03—C08—C10—C09 | −176.38 (16) |
O02—C04—C06—C07 | 178.39 (14) | O03—C08—C10—C05 | 3.8 (3) |
C05—C04—C06—C07 | −1.1 (2) |
References
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schreurs, A. M. M. (2013). PEAKREF. Utrecht University, The Netherlands. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Svärd, M., Gracin, S. & Rasmuson, A. C. (2007). J. Pharm. Sci. 96, 2390–2398. Web of Science PubMed Google Scholar
Velavan, R., Sureshkumar, P., Sivakumar, K. & Natarajan, S. (1995). Acta Cryst. C51, 1131–1133. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.