organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,4-Di­meth­­oxy­benzaldehyde

CROSSMARK_Color_square_no_text.svg

aRadboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
*Correspondence e-mail: p.tinnemans@science.ru.nl

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 June 2016; accepted 21 June 2016; online 2 July 2016)

In the title compound, C9H10O3, one of the meth­oxy C atoms deviates from the plane of the aromatic ring by 0.337 (2) Å. Crystallization was hindered by oiling out in various solvents. The crystal contains neither hydrogen bonds nor aromatic ππ stacking.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, shown in Fig. 1[link], has a strong vanilla fragrance. It crystallizes in the ortho­rhom­bic space group Pna21. Differential scanning calorimetry measurements were performed to screen for polymorphic transitions, but none were observed between 150 K and the melting point of the title compound, 319 K (not shown).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

The compound oils out in water and several organic solvents. Similar behaviour has been observed for the closely related mol­ecule vanillin (Svärd et al., 2007[Svärd, M., Gracin, S. & Rasmuson, A. C. (2007). J. Pharm. Sci. 96, 2390-2398.]). For the crystal structure of vanillin-I, see: Velavan et al. (1995[Velavan, R., Sureshkumar, P., Sivakumar, K. & Natarajan, S. (1995). Acta Cryst. C51, 1131-1133.]).

In the crystal, no hydrogen bonds are present.

Synthesis and crystallization

Commercial 3,4-di­meth­oxy­benzaldehyde (99% pure, Aldrich) was used for the crystallization. A few crystals of the commercial powder were added to an aqueous saturated solution of 3,4-di­meth­oxy­benzaldehyde at room temperature. Subsequently, the temperature was cycled between 298 and 303 K. After 2 weeks colourless needles were grown, suitable for single-crystal X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C9H10O3
Mr 166.17
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 150
a, b, c (Å) 11.374 (2), 14.363 (3), 5.050 (2)
V3) 825.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Colour Colourless
Crystal size (mm) 0.35 × 0.15 × 0.13
 
Data collection
Diffractometer Bruker D8 Quest APEX3
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.90, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 34976, 2608, 2237
Rint 0.050
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.03
No. of reflections 2608
No. of parameters 111
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.19
Absolute structure Flack x determined using 930 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.2 (3)
Computer programs: APEX3 and SAINT (Bruker, 2012[Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), PEAKREF (Schreurs, 2013[Schreurs, A. M. M. (2013). PEAKREF. Utrecht University, The Netherlands.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ShelXLe (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2012); cell refinement: PEAKREF (Schreurs, 2013); data reduction: SAINT (Bruker, 2012) and SADABS (Bruker, 2001); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009) and ShelXLe (Sheldrick, 2015a).

3,4-Dimethoxybenzaldehyde top
Crystal data top
C9H10O3Dx = 1.338 Mg m3
Mr = 166.17Melting point: 319 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
a = 11.374 (2) ÅCell parameters from 2237 reflections
b = 14.363 (3) Åθ = 2.2–30°
c = 5.050 (2) ŵ = 0.10 mm1
V = 825.0 (4) Å3T = 150 K
Z = 4Needle, colourless
F(000) = 3520.35 × 0.15 × 0.13 mm
Data collection top
Bruker D8 Quest APEX3
diffractometer
2608 independent reflections
Radiation source: sealed tube2237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 10.4 pixels mm-1θmax = 31.0°, θmin = 2.3°
φ and ω scansh = 1615
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 2020
Tmin = 0.90, Tmax = 0.99l = 77
34976 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.1158P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2608 reflectionsΔρmax = 0.34 e Å3
111 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack x determined using 930 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O010.62471 (10)0.74604 (8)0.1630 (3)0.0242 (3)
O020.51301 (9)0.63612 (8)0.4799 (3)0.0244 (3)
O030.84277 (11)0.46485 (8)1.0130 (3)0.0286 (3)
C040.63269 (12)0.63367 (10)0.5011 (4)0.0177 (3)
C050.69492 (12)0.57807 (10)0.6762 (4)0.0182 (3)
H050.65430.53690.79140.022*
C060.69401 (13)0.69467 (10)0.3273 (4)0.0179 (3)
C070.81632 (13)0.69977 (10)0.3360 (4)0.0200 (3)
H070.85740.74080.22120.024*
C080.88522 (14)0.52368 (11)0.8669 (4)0.0219 (3)
H080.96810.53190.87260.026*
C090.87817 (13)0.64383 (10)0.5155 (4)0.0198 (3)
H090.96150.64750.52330.024*
C100.81847 (12)0.58287 (11)0.6827 (4)0.0181 (3)
C110.44789 (14)0.59171 (13)0.6874 (4)0.0263 (3)
H11A0.46980.61910.85820.040*
H11B0.46580.52500.68880.040*
H11C0.36350.60070.65720.040*
C120.68316 (17)0.80898 (11)0.0137 (4)0.0281 (4)
H12A0.62480.84020.12560.042*
H12B0.73820.77420.12540.042*
H12C0.72640.85560.08930.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O010.0249 (6)0.0236 (5)0.0242 (6)0.0029 (4)0.0010 (5)0.0068 (5)
O020.0146 (5)0.0269 (5)0.0318 (6)0.0019 (4)0.0009 (5)0.0074 (5)
O030.0247 (6)0.0284 (6)0.0328 (7)0.0016 (5)0.0036 (6)0.0090 (6)
C040.0151 (6)0.0163 (6)0.0217 (7)0.0005 (5)0.0003 (7)0.0014 (6)
C050.0170 (6)0.0161 (6)0.0215 (7)0.0003 (5)0.0000 (7)0.0020 (6)
C060.0214 (7)0.0157 (6)0.0166 (6)0.0012 (5)0.0013 (6)0.0006 (6)
C070.0215 (7)0.0192 (7)0.0193 (7)0.0016 (6)0.0031 (7)0.0001 (6)
C080.0165 (7)0.0239 (7)0.0254 (8)0.0014 (6)0.0036 (6)0.0006 (7)
C090.0155 (6)0.0219 (7)0.0222 (8)0.0014 (5)0.0001 (6)0.0016 (6)
C100.0166 (6)0.0182 (6)0.0194 (7)0.0016 (5)0.0013 (7)0.0022 (6)
C110.0153 (6)0.0316 (8)0.0321 (8)0.0009 (6)0.0032 (7)0.0016 (7)
C120.0385 (9)0.0213 (7)0.0244 (8)0.0026 (6)0.0012 (8)0.0075 (7)
Geometric parameters (Å, º) top
O01—C061.361 (2)C07—H070.9500
O01—C121.434 (2)C08—C101.471 (2)
O02—C041.3659 (17)C08—H080.9500
O02—C111.433 (2)C09—C101.393 (2)
O03—C081.221 (2)C09—H090.9500
C04—C051.386 (2)C11—H11A0.9800
C04—C061.423 (2)C11—H11B0.9800
C05—C101.4073 (19)C11—H11C0.9800
C05—H050.9500C12—H12A0.9800
C06—C071.394 (2)C12—H12B0.9800
C07—C091.401 (3)C12—H12C0.9800
C06—O01—C12116.90 (14)C10—C09—H09119.7
C04—O02—C11116.51 (14)C07—C09—H09119.7
O02—C04—C05125.02 (15)C09—C10—C05120.23 (15)
O02—C04—C06115.10 (14)C09—C10—C08119.66 (13)
C05—C04—C06119.88 (12)C05—C10—C08120.11 (15)
C04—C05—C10119.78 (14)O02—C11—H11A109.5
C04—C05—H05120.1O02—C11—H11B109.5
C10—C05—H05120.1H11A—C11—H11B109.5
O01—C06—C07124.66 (14)O02—C11—H11C109.5
O01—C06—C04115.20 (13)H11A—C11—H11C109.5
C07—C06—C04120.12 (14)H11B—C11—H11C109.5
C06—C07—C09119.45 (15)O01—C12—H12A109.5
C06—C07—H07120.3O01—C12—H12B109.5
C09—C07—H07120.3H12A—C12—H12B109.5
O03—C08—C10125.30 (15)O01—C12—H12C109.5
O03—C08—H08117.4H12A—C12—H12C109.5
C10—C08—H08117.4H12B—C12—H12C109.5
C10—C09—C07120.53 (14)
C11—O02—C04—C0512.6 (2)O01—C06—C07—C09179.45 (17)
C11—O02—C04—C06166.89 (15)C04—C06—C07—C090.6 (2)
O02—C04—C05—C10178.91 (16)C06—C07—C09—C100.6 (2)
C06—C04—C05—C100.6 (2)C07—C09—C10—C051.1 (2)
C12—O01—C06—C070.5 (2)C07—C09—C10—C08179.07 (15)
C12—O01—C06—C04179.47 (14)C04—C05—C10—C090.6 (2)
O02—C04—C06—O010.6 (2)C04—C05—C10—C08179.65 (16)
C05—C04—C06—O01179.87 (14)O03—C08—C10—C09176.38 (16)
O02—C04—C06—C07178.39 (14)O03—C08—C10—C053.8 (3)
C05—C04—C06—C071.1 (2)
 

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchreurs, A. M. M. (2013). PEAKREF. Utrecht University, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvärd, M., Gracin, S. & Rasmuson, A. C. (2007). J. Pharm. Sci. 96, 2390–2398.  Web of Science PubMed Google Scholar
First citationVelavan, R., Sureshkumar, P., Sivakumar, K. & Natarajan, S. (1995). Acta Cryst. C51, 1131–1133.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds