metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[tetra­methano­lbis[4-oxo-3-(pyridin-4-yl)-1-(2,4,6-tri­chloro­phen­yl)-4,5-di­hydro-1H-pyrazolo[3,4-d]pyrimidin-6-olato]disodium]–di­ethyl ether–methanol (1/1/2)]

CROSSMARK_Color_square_no_text.svg

aFaculty of Science, Chemistry Department, Islamic University of Gaza, Gaza Strip, Palestinian Territories, bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and cInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karl University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
*Correspondence e-mail: Stefan.laufer@uni-tuebingen.de

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 20 June 2016; accepted 4 July 2016; online 12 July 2016)

In the title compound, [Na2(C16H7Cl3N5O2)2(CH3OH)4]·C4H10O·2CH3OH, the central pyrazolo­[3,4-d]pyrimidine system makes dihedral angles of 82.98 (7)° with the tri­chloro­phenyl ring and 13.11 (15)° with the pyridine ring. The sodium ion has an octa­hedral environment, being coordinated by four methanol mol­ecules and one O and one N atom of two different heterocyclic ring systems.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the framework of investigating the efficiency of 4-(4-fluoro­phen­yl)-3-(pyridin-4-yl)-1-(ar­yl)-1H-pyrazol-5-amines as inhibitors for kinases relevant to cancer, many derivatives of this compound have been synthesized (Abu Thaher, Arnsmann et al., 2012[Abu Thaher, B., Arnsmann, M., Totzke, F., Ehlert, J., Kubbutat, M., Schächtele, C., Zimmermann, M., Koch, P., Boeckler, F. & Laufer, S. (2012). J. Med. Chem. 55, 961-965.]). Recently, we have reported the crystal structures of several amino pyrazoles (Abu Thaher, Koch et al., 2012a[Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012a). Acta Cryst. E68, o917-o918.],b[Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012b). Acta Cryst. E68, o2603.],c[Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012c). Acta Cryst. E68, o633.],d,[Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012d). Acta Cryst. E68, o632.]e[Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012e). Acta Cryst. E68, o935.]). Finally, in our approach of synthesizing new derivatives, we managed to prepare crystals of the title compound (Fig. 1[link]). It crystallizes with three methanol mol­ecules which have quite different functions in the crystal structure – only two coordinate to the sodium cation and the third one does not. However, all three are involved hydrogen bonds to the pyrazolo­[3,4-d]pyrimidine system (see Table 1[link]). The sodium cation is surrounded by by four methanol O atoms and one O and one N atom of two different heterocyclic ring systems. The position of the negative charge could not be determined, and we assum that it is delocalized over the pyrazolo­[3,4-d]pyrimidine system. The dihedral angle between the pyrazolo­[3,4-d]pyrimidine ring system and the pyridine ring is 13.11 (15)°, smaller than that subtended to the trichlorophenyl plane [82.98 (7)°]. One diethyl ether solvent mol­ecule is disordered about the twofold rotation axis and fills a channel parallel to the b axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O14i 0.81 (3) 1.99 (3) 2.771 (3) 160 (3)
C21—H21⋯O15 0.95 2.29 3.096 (3) 142
O1L—H1L⋯N2 0.86 (4) 2.21 (4) 3.062 (3) 172 (3)
O2L—H2L⋯N2 0.78 (4) 2.06 (4) 2.815 (3) 163 (4)
O3L—H3L⋯O2L 0.84 (4) 1.94 (4) 2.783 (3) 176 (4)
Symmetry code: (i) -x, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Synthesis and crystallization

2 mmol of N-(2,4,6-tri­chloro­phen­yl)-4-pyridine­carbo­hydra­zon­oyl chloride and 1.5 equiv. of ethyl (2-cyano­acet­yl)carbamate were dissolved in 20 ml dry ethanol and cooled to 273 K in an ice bath. 2.0 equiv. of sodium ethoxide solution (21% ethanol) was added dropwise and the reaction was stirred overnight. The precipitate was filtered from the reaction mixture, washed with water and then with diethyl ether. Yield: 30%. Suitable crystals for X-ray analysis were obtained by slow evaporation of a methanol/diethyl ether solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One mol­ecule of ether is disordered about the twofold rotation axis. Consequently, the site occupation factors of all ether atoms were set to 0.5 and the displacement parameters were fixed to an isotropic behaviour. The C—C distances in the ether mol­ecule were restrained to 1.54 (2) Å, the C—O distances to 1.46 (2) Å.

Table 2
Experimental details

Crystal data
Chemical formula [Na2(C16H7Cl3N5O2)2(CH4O)4]·C4H10O·2CH4O
Mr 1127.58
Crystal system, space group Monoclinic, P2/n
Temperature (K) 173
a, b, c (Å) 11.1721 (7), 8.1249 (5), 28.8799 (18)
β (°) 100.213 (1)
V3) 2580.0 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.56 × 0.32 × 0.19
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.659, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 27638, 6097, 5149
Rint 0.032
(sin θ/λ)max−1) 0.657
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.131, 1.15
No. of reflections 6097
No. of parameters 357
No. of restraints 34
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.40
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1995[Altomare, A., Burla, M. C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G. & Polidori, G. (1995). J. Appl. Cryst. 28, 842-846.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1995); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: please specify; software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Poly[[tetramethanolbis[4-oxo-3-(pyridin-4-yl)-1-(2,4,6-trichlorophenyl)-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-6-olato]disodium]–diethyl ether–methanol (1/1/2)] top
Crystal data top
[Na2(C16H7Cl3N5O2)2(CH4O)4]·C4H10O·2CH4OF(000) = 1164
Mr = 1127.58Dx = 1.451 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 11.1721 (7) ÅCell parameters from 7933 reflections
b = 8.1249 (5) Åθ = 2.5–27.3°
c = 28.8799 (18) ŵ = 0.42 mm1
β = 100.213 (1)°T = 173 K
V = 2580.0 (3) Å3Plate, colourless
Z = 20.56 × 0.32 × 0.19 mm
Data collection top
Bruker SMART APEXII
diffractometer
6097 independent reflections
Radiation source: sealed Tube5149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
CCD scanθmax = 27.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1414
Tmin = 0.659, Tmax = 0.746k = 1010
27638 measured reflectionsl = 3736
Refinement top
Refinement on F234 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0325P)2 + 4.0979P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
6097 reflectionsΔρmax = 0.43 e Å3
357 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.45803 (8)1.01629 (9)0.10052 (3)0.0431 (2)
Cl20.40976 (11)1.11088 (12)0.27980 (3)0.0642 (3)
Cl30.37696 (9)0.50085 (9)0.20830 (3)0.0475 (2)
Na10.11263 (9)0.89845 (12)0.03200 (3)0.0254 (2)
N10.42042 (17)0.6597 (2)0.11953 (7)0.0220 (4)
C1A0.3251 (2)0.6160 (3)0.08581 (8)0.0191 (4)
N20.21387 (17)0.6884 (2)0.08078 (7)0.0206 (4)
C30.1322 (2)0.6233 (3)0.04576 (8)0.0216 (5)
N40.16419 (18)0.4928 (3)0.01943 (7)0.0238 (4)
H40.109 (3)0.463 (4)0.0010 (11)0.029*
C50.2751 (2)0.4123 (3)0.02483 (8)0.0206 (5)
C5A0.3650 (2)0.4882 (3)0.06008 (8)0.0193 (4)
C60.4902 (2)0.4656 (3)0.08111 (8)0.0203 (5)
N70.52267 (18)0.5672 (2)0.11695 (7)0.0230 (4)
C80.4183 (2)0.7679 (3)0.15784 (8)0.0204 (5)
C90.4335 (2)0.9364 (3)0.15336 (8)0.0261 (5)
C100.4302 (3)1.0434 (3)0.19022 (10)0.0347 (6)
H100.43971.15850.18650.042*
C110.4126 (3)0.9778 (4)0.23280 (10)0.0372 (7)
C120.3975 (3)0.8119 (4)0.23925 (9)0.0347 (6)
H120.38600.76940.26880.042*
C130.3998 (2)0.7089 (3)0.20122 (9)0.0271 (5)
O140.02442 (15)0.6747 (2)0.03630 (7)0.0294 (4)
O150.28421 (15)0.2879 (2)0.00110 (6)0.0275 (4)
C160.5838 (2)0.3550 (3)0.06783 (9)0.0221 (5)
C170.6945 (2)0.3344 (4)0.09772 (11)0.0374 (7)
H170.71160.39350.12650.045*
C180.7793 (3)0.2279 (4)0.08534 (12)0.0415 (7)
H180.85410.21490.10660.050*
N190.7630 (2)0.1411 (3)0.04513 (8)0.0315 (5)
C200.6562 (2)0.1618 (3)0.01668 (9)0.0293 (6)
H200.64150.10180.01200.035*
C210.5649 (2)0.2660 (3)0.02643 (9)0.0259 (5)
H210.49050.27570.00480.031*
O1L0.10188 (18)1.0229 (2)0.04918 (7)0.0316 (4)
H1L0.140 (3)0.933 (5)0.0582 (12)0.047*
C1L0.1214 (3)1.1374 (4)0.08720 (10)0.0411 (7)
H1L10.20811.16430.09500.062*
H1L20.09471.08870.11470.062*
H1L30.07481.23800.07800.062*
O2L0.08388 (19)0.6785 (3)0.15581 (7)0.0356 (5)
H2L0.127 (3)0.697 (5)0.1379 (14)0.053*
C2L0.0432 (4)0.5118 (4)0.15216 (13)0.0524 (8)
H2L10.11360.43820.15500.079*
H2L20.00950.49480.12160.079*
H2L30.00240.48800.17740.079*
O3L0.1123 (2)0.8688 (3)0.11335 (8)0.0422 (5)
H3L0.051 (4)0.815 (5)0.1263 (14)0.063*
C3L0.2187 (4)0.8095 (8)0.1267 (2)0.113 (2)
H3L10.20720.80280.16110.170*
H3L20.28620.88420.11510.170*
H3L30.23710.69980.11320.170*
C1E0.758 (3)0.042 (3)0.2224 (9)0.216 (12)0.5
H1E10.75280.06440.23770.324*0.5
H1E20.68740.05680.19730.324*0.5
H1E30.83270.04700.20900.324*0.5
C2E0.760 (4)0.180 (3)0.2586 (10)0.205 (14)0.5
H2E10.68500.17720.27240.246*0.5
H2E20.83110.16740.28430.246*0.5
O3E0.768 (2)0.331 (2)0.2334 (5)0.185 (8)0.5
C4E0.762 (3)0.459 (3)0.2683 (7)0.198 (13)0.5
H4E10.70280.42890.28880.238*0.5
H4E20.84260.47630.28820.238*0.5
C5E0.723 (2)0.603 (2)0.2411 (7)0.159 (9)0.5
H5E10.71650.69520.26230.239*0.5
H5E20.78200.62890.22090.239*0.5
H5E30.64320.58190.22160.239*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0704 (5)0.0314 (4)0.0307 (4)0.0097 (3)0.0179 (3)0.0028 (3)
Cl20.1083 (8)0.0513 (5)0.0354 (4)0.0011 (5)0.0191 (5)0.0229 (4)
Cl30.0732 (6)0.0238 (3)0.0498 (5)0.0001 (3)0.0227 (4)0.0082 (3)
Na10.0244 (5)0.0230 (5)0.0289 (5)0.0052 (4)0.0045 (4)0.0061 (4)
N10.0189 (9)0.0217 (10)0.0251 (10)0.0020 (8)0.0034 (8)0.0043 (8)
C1A0.0202 (11)0.0167 (10)0.0208 (11)0.0012 (8)0.0047 (9)0.0015 (9)
N20.0189 (9)0.0202 (9)0.0223 (10)0.0037 (8)0.0026 (8)0.0045 (8)
C30.0219 (11)0.0190 (11)0.0236 (12)0.0037 (9)0.0033 (9)0.0032 (9)
N40.0196 (10)0.0241 (10)0.0254 (10)0.0034 (8)0.0025 (8)0.0099 (9)
C50.0206 (11)0.0180 (11)0.0235 (11)0.0018 (9)0.0044 (9)0.0010 (9)
C5A0.0186 (10)0.0170 (10)0.0226 (11)0.0011 (8)0.0045 (8)0.0014 (9)
C60.0193 (11)0.0180 (11)0.0236 (11)0.0002 (9)0.0042 (9)0.0011 (9)
N70.0186 (9)0.0211 (10)0.0289 (11)0.0027 (8)0.0032 (8)0.0048 (8)
C80.0187 (11)0.0216 (11)0.0204 (11)0.0010 (9)0.0023 (9)0.0036 (9)
C90.0342 (14)0.0253 (12)0.0191 (12)0.0028 (10)0.0057 (10)0.0002 (10)
C100.0518 (17)0.0200 (12)0.0325 (14)0.0027 (12)0.0081 (13)0.0063 (11)
C110.0507 (17)0.0351 (15)0.0253 (13)0.0015 (13)0.0057 (12)0.0113 (12)
C120.0465 (16)0.0362 (15)0.0220 (13)0.0052 (13)0.0078 (12)0.0017 (11)
C130.0333 (13)0.0202 (11)0.0281 (13)0.0025 (10)0.0065 (10)0.0022 (10)
O140.0208 (8)0.0265 (9)0.0372 (10)0.0083 (7)0.0047 (7)0.0123 (8)
O150.0225 (8)0.0242 (9)0.0352 (10)0.0034 (7)0.0035 (7)0.0120 (8)
C160.0192 (11)0.0164 (10)0.0320 (13)0.0017 (9)0.0084 (9)0.0003 (9)
C170.0273 (13)0.0352 (15)0.0457 (17)0.0082 (12)0.0044 (12)0.0184 (13)
C180.0261 (13)0.0410 (16)0.0532 (19)0.0092 (12)0.0049 (13)0.0205 (15)
N190.0251 (11)0.0292 (11)0.0404 (13)0.0061 (9)0.0065 (10)0.0066 (10)
C200.0319 (13)0.0331 (14)0.0243 (12)0.0083 (11)0.0089 (10)0.0017 (11)
C210.0246 (12)0.0322 (13)0.0214 (12)0.0055 (10)0.0049 (9)0.0019 (10)
O1L0.0381 (11)0.0242 (9)0.0316 (10)0.0037 (8)0.0043 (8)0.0045 (8)
C1L0.0551 (19)0.0356 (16)0.0342 (15)0.0047 (14)0.0124 (14)0.0105 (13)
O2L0.0424 (12)0.0380 (11)0.0276 (10)0.0035 (9)0.0094 (8)0.0040 (9)
C2L0.064 (2)0.0436 (19)0.052 (2)0.0085 (17)0.0164 (17)0.0005 (16)
O3L0.0369 (11)0.0505 (13)0.0408 (12)0.0119 (10)0.0113 (9)0.0069 (10)
C3L0.063 (3)0.145 (5)0.145 (5)0.033 (3)0.055 (3)0.088 (5)
C1E0.17 (2)0.22 (3)0.26 (3)0.01 (2)0.03 (2)0.01 (2)
C2E0.15 (2)0.31 (3)0.15 (3)0.10 (3)0.03 (2)0.05 (3)
O3E0.231 (19)0.198 (14)0.110 (12)0.043 (14)0.016 (13)0.000 (11)
C4E0.19 (2)0.29 (3)0.136 (18)0.09 (2)0.087 (19)0.09 (2)
C5E0.18 (2)0.178 (17)0.086 (15)0.044 (16)0.062 (11)0.011 (12)
Geometric parameters (Å, º) top
Cl1—C91.724 (3)C18—N191.343 (4)
Cl2—C111.740 (3)C18—H180.9500
Cl3—C131.727 (3)N19—C201.334 (3)
Na1—O3L2.361 (2)N19—Na1iv2.479 (2)
Na1—O142.3660 (19)C20—C211.392 (3)
Na1—O1Li2.453 (2)C20—H200.9500
Na1—N19ii2.479 (2)C21—H210.9500
Na1—O15iii2.496 (2)O1L—C1L1.426 (3)
Na1—O1L2.567 (2)O1L—Na1i2.453 (2)
Na1—Na1i3.758 (2)O1L—H1L0.86 (4)
N1—C1A1.357 (3)C1L—H1L10.9800
N1—N71.380 (3)C1L—H1L20.9800
N1—C81.417 (3)C1L—H1L30.9800
C1A—N21.359 (3)O2L—C2L1.426 (4)
C1A—C5A1.396 (3)O2L—H2L0.78 (4)
N2—C31.345 (3)C2L—H2L10.9800
C3—O141.258 (3)C2L—H2L20.9800
C3—N41.387 (3)C2L—H2L30.9800
N4—C51.386 (3)O3L—C3L1.398 (5)
N4—H40.81 (3)O3L—H3L0.84 (4)
C5—O151.236 (3)C3L—H3L10.9800
C5—C5A1.436 (3)C3L—H3L20.9800
C5A—C61.434 (3)C3L—H3L30.9800
C6—N71.323 (3)C1E—C2E1.525 (18)
C6—C161.480 (3)C1E—H1E10.9800
C8—C91.388 (3)C1E—H1E20.9800
C8—C131.391 (3)C1E—H1E30.9800
C9—C101.380 (4)C2E—O3E1.437 (18)
C10—C111.386 (4)C2E—H2E10.9900
C10—H100.9500C2E—H2E20.9900
C11—C121.375 (4)O3E—C4E1.458 (15)
C12—C131.384 (4)C4E—C5E1.433 (17)
C12—H120.9500C4E—H4E10.9900
O15—Na1iii2.496 (2)C4E—H4E20.9900
C16—C211.381 (3)C5E—H5E10.9800
C16—C171.387 (4)C5E—H5E20.9800
C17—C181.377 (4)C5E—H5E30.9800
C17—H170.9500
O3L—Na1—O1489.01 (8)C18—C17—H17120.2
O3L—Na1—O1Li170.31 (9)C16—C17—H17120.2
O14—Na1—O1Li96.29 (7)N19—C18—C17124.1 (3)
O3L—Na1—N19ii80.25 (8)N19—C18—H18118.0
O14—Na1—N19ii167.94 (8)C17—C18—H18118.0
O1Li—Na1—N19ii93.60 (8)C20—N19—C18115.8 (2)
O3L—Na1—O15iii100.64 (8)C20—N19—Na1iv118.07 (17)
O14—Na1—O15iii89.99 (7)C18—N19—Na1iv123.76 (18)
O1Li—Na1—O15iii87.50 (7)N19—C20—C21124.0 (2)
N19ii—Na1—O15iii97.33 (7)N19—C20—H20118.0
O3L—Na1—O1L90.65 (8)C21—C20—H20118.0
O14—Na1—O1L73.70 (7)C16—C21—C20119.2 (2)
O1Li—Na1—O1L83.11 (7)C16—C21—H21120.4
N19ii—Na1—O1L100.76 (8)C20—C21—H21120.4
O15iii—Na1—O1L160.08 (7)C1L—O1L—Na1i122.62 (17)
O3L—Na1—Na1i130.64 (7)C1L—O1L—Na1114.57 (17)
O14—Na1—Na1i83.09 (6)Na1i—O1L—Na196.90 (7)
O1Li—Na1—Na1i42.70 (5)C1L—O1L—H1L109 (2)
N19ii—Na1—Na1i99.70 (7)Na1i—O1L—H1L114 (2)
O15iii—Na1—Na1i127.87 (6)Na1—O1L—H1L97 (2)
O1L—Na1—Na1i40.40 (5)O1L—C1L—H1L1109.5
C1A—N1—N7111.75 (19)O1L—C1L—H1L2109.5
C1A—N1—C8127.10 (19)H1L1—C1L—H1L2109.5
N7—N1—C8120.57 (19)O1L—C1L—H1L3109.5
N1—C1A—N2123.3 (2)H1L1—C1L—H1L3109.5
N1—C1A—C5A107.0 (2)H1L2—C1L—H1L3109.5
N2—C1A—C5A129.6 (2)C2L—O2L—H2L111 (3)
C3—N2—C1A113.27 (19)O2L—C2L—H2L1109.5
O14—C3—N2121.9 (2)O2L—C2L—H2L2109.5
O14—C3—N4117.6 (2)H2L1—C2L—H2L2109.5
N2—C3—N4120.5 (2)O2L—C2L—H2L3109.5
C5—N4—C3127.6 (2)H2L1—C2L—H2L3109.5
C5—N4—H4120 (2)H2L2—C2L—H2L3109.5
C3—N4—H4113 (2)C3L—O3L—Na1117.3 (3)
O15—C5—N4118.9 (2)C3L—O3L—H3L111 (3)
O15—C5—C5A128.9 (2)Na1—O3L—H3L111 (3)
N4—C5—C5A112.1 (2)O3L—C3L—H3L1109.5
C1A—C5A—C6104.4 (2)O3L—C3L—H3L2109.5
C1A—C5A—C5116.6 (2)H3L1—C3L—H3L2109.5
C6—C5A—C5138.8 (2)O3L—C3L—H3L3109.5
N7—C6—C5A111.3 (2)H3L1—C3L—H3L3109.5
N7—C6—C16118.3 (2)H3L2—C3L—H3L3109.5
C5A—C6—C16130.4 (2)C2E—C1E—H1E1109.5
C6—N7—N1105.50 (18)C2E—C1E—H1E2109.5
C9—C8—C13117.6 (2)H1E1—C1E—H1E2109.5
C9—C8—N1121.3 (2)C2E—C1E—H1E3109.5
C13—C8—N1121.0 (2)H1E1—C1E—H1E3109.5
C10—C9—C8121.9 (2)H1E2—C1E—H1E3109.5
C10—C9—Cl1118.4 (2)O3E—C2E—C1E106 (2)
C8—C9—Cl1119.67 (19)O3E—C2E—H2E1110.6
C9—C10—C11118.0 (2)C1E—C2E—H2E1110.6
C9—C10—H10121.0O3E—C2E—H2E2110.6
C11—C10—H10121.0C1E—C2E—H2E2110.6
C12—C11—C10122.5 (3)H2E1—C2E—H2E2108.7
C12—C11—Cl2118.9 (2)C2E—O3E—C4E104.2 (16)
C10—C11—Cl2118.6 (2)C5E—C4E—O3E104.5 (15)
C11—C12—C13117.7 (3)C5E—C4E—H4E1110.9
C11—C12—H12121.1O3E—C4E—H4E1110.9
C13—C12—H12121.1C5E—C4E—H4E2110.9
C12—C13—C8122.2 (2)O3E—C4E—H4E2110.9
C12—C13—Cl3118.3 (2)H4E1—C4E—H4E2108.9
C8—C13—Cl3119.51 (19)C4E—C5E—H5E1109.5
C3—O14—Na1148.44 (16)C4E—C5E—H5E2109.5
C5—O15—Na1iii125.15 (15)H5E1—C5E—H5E2109.5
C21—C16—C17117.3 (2)C4E—C5E—H5E3109.5
C21—C16—C6122.4 (2)H5E1—C5E—H5E3109.5
C17—C16—C6120.3 (2)H5E2—C5E—H5E3109.5
C18—C17—C16119.5 (3)
N7—N1—C1A—N2180.0 (2)C13—C8—C9—Cl1179.50 (19)
C8—N1—C1A—N28.7 (4)N1—C8—C9—Cl11.1 (3)
N7—N1—C1A—C5A0.6 (3)C8—C9—C10—C110.8 (4)
C8—N1—C1A—C5A170.6 (2)Cl1—C9—C10—C11178.9 (2)
N1—C1A—N2—C3178.6 (2)C9—C10—C11—C120.5 (5)
C5A—C1A—N2—C30.6 (4)C9—C10—C11—Cl2179.3 (2)
C1A—N2—C3—O14179.6 (2)C10—C11—C12—C130.4 (5)
C1A—N2—C3—N41.2 (3)Cl2—C11—C12—C13179.8 (2)
O14—C3—N4—C5177.1 (2)C11—C12—C13—C81.0 (4)
N2—C3—N4—C51.3 (4)C11—C12—C13—Cl3178.3 (2)
C3—N4—C5—O15173.1 (2)C9—C8—C13—C120.7 (4)
C3—N4—C5—C5A5.1 (4)N1—C8—C13—C12179.9 (2)
N1—C1A—C5A—C61.2 (2)C9—C8—C13—Cl3178.6 (2)
N2—C1A—C5A—C6179.5 (2)N1—C8—C13—Cl30.9 (3)
N1—C1A—C5A—C5174.7 (2)N2—C3—O14—Na134.4 (5)
N2—C1A—C5A—C54.6 (4)N4—C3—O14—Na1147.2 (2)
O15—C5—C5A—C1A171.8 (2)N4—C5—O15—Na1iii25.5 (3)
N4—C5—C5A—C1A6.1 (3)C5A—C5—O15—Na1iii152.3 (2)
O15—C5—C5A—C62.1 (5)N7—C6—C16—C21168.5 (2)
N4—C5—C5A—C6180.0 (3)C5A—C6—C16—C219.0 (4)
C1A—C5A—C6—N71.4 (3)N7—C6—C16—C1712.9 (4)
C5—C5A—C6—N7173.0 (3)C5A—C6—C16—C17169.6 (3)
C1A—C5A—C6—C16176.2 (2)C21—C16—C17—C180.3 (4)
C5—C5A—C6—C169.4 (5)C6—C16—C17—C18178.4 (3)
C5A—C6—N7—N11.0 (3)C16—C17—C18—N190.7 (5)
C16—C6—N7—N1176.9 (2)C17—C18—N19—C200.7 (5)
C1A—N1—N7—C60.2 (3)C17—C18—N19—Na1iv163.0 (3)
C8—N1—N7—C6172.1 (2)C18—N19—C20—C210.3 (4)
C1A—N1—C8—C987.6 (3)Na1iv—N19—C20—C21163.6 (2)
N7—N1—C8—C9101.9 (3)C17—C16—C21—C200.1 (4)
C1A—N1—C8—C1391.8 (3)C6—C16—C21—C20178.8 (2)
N7—N1—C8—C1378.7 (3)N19—C20—C21—C160.1 (4)
C13—C8—C9—C100.2 (4)C1E—C2E—O3E—C4E177 (2)
N1—C8—C9—C10179.2 (2)C2E—O3E—C4E—C5E159 (3)
Symmetry codes: (i) x, y+2, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O14iii0.81 (3)1.99 (3)2.771 (3)160 (3)
C21—H21···O150.952.293.096 (3)142
O1L—H1L···N20.86 (4)2.21 (4)3.062 (3)172 (3)
O2L—H2L···N20.78 (4)2.06 (4)2.815 (3)163 (4)
O3L—H3L···O2L0.84 (4)1.94 (4)2.783 (3)176 (4)
Symmetry code: (iii) x, y+1, z.
 

Acknowledgements

BAT thanks the Alexander von Humboldt-Foundation (AvH) for funding.

References

First citationAbu Thaher, B., Arnsmann, M., Totzke, F., Ehlert, J., Kubbutat, M., Schächtele, C., Zimmermann, M., Koch, P., Boeckler, F. & Laufer, S. (2012). J. Med. Chem. 55, 961–965.  Web of Science CAS PubMed Google Scholar
First citationAbu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012a). Acta Cryst. E68, o917–o918.  CSD CrossRef IUCr Journals Google Scholar
First citationAbu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012b). Acta Cryst. E68, o2603.  CSD CrossRef IUCr Journals Google Scholar
First citationAbu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012c). Acta Cryst. E68, o633.  CSD CrossRef IUCr Journals Google Scholar
First citationAbu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012d). Acta Cryst. E68, o632.  CSD CrossRef IUCr Journals Google Scholar
First citationAbu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012e). Acta Cryst. E68, o935.  CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G. & Polidori, G. (1995). J. Appl. Cryst. 28, 842–846.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds