organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[4-(4-Meth­­oxy­phen­yl)-1,3-thia­zol-2-yl]-2,3-di­hydro-1H-iso­indole-1,3-dione

CROSSMARK_Color_square_no_text.svg

aDrug Discovery Lab, Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, and bPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: profskabilan@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 12 June 2016; accepted 28 June 2016; online 2 July 2016)

In the title iso­indole, C18H12N2O3S, the meth­oxy­phenyl ring is oriented at an angle of 9.5 (1)° with respect to the thia­zole ring. In the crystal, mol­ecules are linked via C—H⋯O inter­actions, which form C(7) chains propagating along [010]. In addition to this, weak ππ inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In a continuation of our work on the crystal structure analysis of iso­indole derivatives, we have undertaken a single-crystal X-ray diffraction study for the title compound, and the results are presented here.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The thia­zole ring is planar with a maximum deviation of −0.003 (3) Å for atom C7. The keto O atoms O2 and O3 deviate from the mean plane of the ring to which they are attached by −0.030 (3) and 0.090 (3) Å, respectively. The meth­oxy group atoms (O1 and C18) deviate by −0.009 (3) and 0.314 (4) Å, respectively, from the best plane of the meth­oxy­phenyl ring. This ring makes a dihedral angle of 9.5 (1)° with thia­zole ring. The meth­oxy phenyl ring is oriented at an angle of 5.2 (1)° with respect to the iso­indole ring system. The mol­ecular structure is influenced by an intra­molecular C—H⋯N hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1 0.93 2.52 2.853 (5) 102
C8—H8⋯O3i 0.93 2.36 3.282 (5) 171
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, C—H⋯O inter­actions link the mol­ecules, forming C(7) chains propagating along along the b axis, see Fig. 2[link]. In addition, ππ inter­actions are also observed between the centroids of the benzene rings (C1–C6) and (C11–C16) at (−1 + x, [{1\over 2}] − y, −[{1\over 2}] + z) with a centroid–centroid distance of 3.740 (5) Å, see Fig. 3[link].

[Figure 2]
Figure 2
Crystal packing of the title compound, viewed along the c axis. The C—H⋯N and C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in these hydrogen bonds have been omitted.
[Figure 3]
Figure 3
The packing of the title compound, showing ππ inter­actions as dashed lines. For clarity, H atoms have been omitted.

Synthesis and crystallization

A mixture of 4-(4-meth­oxy­phen­yl) thia­zol-2-amine (300 mg, 1.46 mmol), phthalic anhydride (431 mmol, 2.92 mmol) in glacial acetic acid (5 ml) was refluxed for 3 h. After cooling, the resulting solid was collected by filtration, washed with petroleum–ether and dried under vacuum giving a yellow solid. The solid was further recrystallized from DMF to yield yellow crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H12N2O3S
Mr 336.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.004 (9), 14.054 (17), 15.275 (19)
β (°) 90.368 (12)
V3) 1504 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.22 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 4938, 3280, 2012
Rint 0.057
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.219, 1.07
No. of reflections 3280
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.38
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-[4-(4-Methoxyphenyl)-1,3-thiazol-2-yl]-2,3-dihydro-1H-isoindole-1,3-dione top
Crystal data top
C18H12N2O3SF(000) = 696
Mr = 336.36Dx = 1.486 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.004 (9) ÅCell parameters from 3920 reflections
b = 14.054 (17) Åθ = 3.2–27.2°
c = 15.275 (19) ŵ = 0.24 mm1
β = 90.368 (12)°T = 296 K
V = 1504 (3) Å3Block, yellow
Z = 40.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.057
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.0°
ω scansh = 88
4938 measured reflectionsk = 1811
3280 independent reflectionsl = 1913
2012 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.219 w = 1/[σ2(Fo2) + (0.1064P)2 + 0.3164P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3280 reflectionsΔρmax = 0.28 e Å3
217 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16107 (14)0.07298 (6)0.19904 (7)0.0674 (4)
O10.7223 (3)0.31712 (18)0.44991 (16)0.0653 (7)
O20.5105 (4)0.10061 (17)0.12684 (18)0.0691 (7)
O30.2926 (3)0.39658 (16)0.19483 (18)0.0650 (7)
N10.0707 (3)0.23879 (18)0.25350 (16)0.0470 (6)
N20.3584 (3)0.23623 (17)0.17360 (16)0.0462 (6)
C10.2631 (4)0.3122 (2)0.3356 (2)0.0508 (7)
H10.17090.35340.31390.061*
C20.4239 (5)0.3500 (2)0.3752 (2)0.0533 (8)
H20.43990.41550.37930.064*
C30.5604 (4)0.2885 (2)0.40857 (19)0.0511 (7)
C40.5327 (5)0.1922 (2)0.4020 (2)0.0572 (8)
H40.62310.15090.42520.069*
C50.3740 (5)0.1556 (2)0.3620 (2)0.0541 (8)
H50.35880.09010.35790.065*
C60.2357 (4)0.2155 (2)0.32758 (18)0.0466 (7)
C70.0704 (4)0.1775 (2)0.2808 (2)0.0476 (7)
C80.0427 (5)0.0870 (2)0.2574 (2)0.0644 (9)
H80.12520.03750.27150.077*
C90.1984 (4)0.1926 (2)0.21012 (19)0.0465 (7)
C100.5085 (4)0.1856 (2)0.1338 (2)0.0517 (8)
C110.6487 (4)0.2556 (2)0.10617 (19)0.0493 (7)
C120.8216 (5)0.2432 (3)0.0653 (2)0.0599 (9)
H120.86380.18310.04890.072*
C130.9286 (5)0.3222 (3)0.0497 (2)0.0702 (10)
H131.04550.31590.02180.084*
C140.8681 (5)0.4103 (3)0.0741 (2)0.0703 (10)
H140.94600.46270.06400.084*
C150.6925 (5)0.4233 (2)0.1137 (2)0.0609 (9)
H150.64990.48350.12950.073*
C160.5847 (4)0.3441 (2)0.12852 (19)0.0485 (7)
C170.3955 (4)0.3349 (2)0.17011 (19)0.0460 (7)
C180.7772 (6)0.4126 (3)0.4398 (3)0.0757 (11)
H18A0.89250.42390.47180.114*
H18B0.67780.45330.46190.114*
H18C0.79880.42590.37890.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0750 (7)0.0361 (4)0.0914 (7)0.0012 (4)0.0164 (5)0.0021 (4)
O10.0654 (15)0.0593 (15)0.0715 (15)0.0119 (12)0.0227 (12)0.0007 (12)
O20.0732 (16)0.0427 (13)0.0914 (18)0.0122 (12)0.0095 (13)0.0082 (12)
O30.0631 (14)0.0388 (12)0.0934 (18)0.0035 (11)0.0236 (12)0.0036 (11)
N10.0492 (14)0.0418 (13)0.0501 (14)0.0023 (11)0.0015 (11)0.0001 (10)
N20.0479 (13)0.0359 (12)0.0548 (14)0.0022 (11)0.0045 (11)0.0008 (10)
C10.0549 (18)0.0438 (16)0.0536 (17)0.0089 (14)0.0042 (13)0.0063 (13)
C20.0595 (19)0.0457 (17)0.0548 (18)0.0067 (15)0.0075 (14)0.0040 (14)
C30.0517 (17)0.0545 (18)0.0472 (16)0.0084 (15)0.0053 (13)0.0005 (13)
C40.063 (2)0.0468 (17)0.062 (2)0.0150 (16)0.0085 (15)0.0017 (14)
C50.064 (2)0.0407 (16)0.0581 (18)0.0119 (15)0.0051 (15)0.0040 (14)
C60.0521 (16)0.0464 (16)0.0412 (15)0.0051 (14)0.0025 (12)0.0066 (12)
C70.0518 (17)0.0409 (16)0.0500 (16)0.0050 (13)0.0012 (13)0.0058 (12)
C80.065 (2)0.0449 (18)0.084 (2)0.0075 (16)0.0127 (18)0.0017 (16)
C90.0518 (16)0.0380 (14)0.0496 (16)0.0016 (13)0.0037 (13)0.0023 (12)
C100.0529 (18)0.0464 (17)0.0559 (18)0.0133 (14)0.0012 (14)0.0046 (13)
C110.0490 (16)0.0527 (18)0.0462 (15)0.0068 (14)0.0028 (13)0.0004 (13)
C120.0555 (19)0.069 (2)0.0551 (19)0.0144 (17)0.0050 (15)0.0047 (16)
C130.056 (2)0.097 (3)0.058 (2)0.008 (2)0.0157 (16)0.002 (2)
C140.059 (2)0.080 (3)0.072 (2)0.0131 (19)0.0181 (17)0.012 (2)
C150.065 (2)0.0519 (19)0.066 (2)0.0031 (17)0.0146 (16)0.0019 (16)
C160.0520 (17)0.0507 (17)0.0428 (15)0.0059 (14)0.0058 (12)0.0005 (13)
C170.0472 (16)0.0390 (15)0.0516 (16)0.0032 (13)0.0014 (12)0.0008 (12)
C180.073 (2)0.068 (3)0.086 (3)0.007 (2)0.027 (2)0.008 (2)
Geometric parameters (Å, º) top
S1—C81.699 (4)C5—H50.9300
S1—C91.710 (4)C6—C71.466 (4)
O1—C31.362 (4)C7—C81.335 (5)
O1—C181.404 (5)C8—H80.9300
O2—C101.199 (4)C10—C111.454 (5)
O3—C171.191 (4)C11—C161.366 (4)
N1—C91.291 (4)C11—C121.378 (4)
N1—C71.378 (4)C12—C131.361 (6)
N2—C91.397 (4)C12—H120.9300
N2—C101.411 (4)C13—C141.361 (6)
N2—C171.411 (4)C13—H130.9300
C1—C61.377 (5)C14—C151.386 (5)
C1—C21.387 (4)C14—H140.9300
C1—H10.9300C15—C161.365 (5)
C2—C31.387 (4)C15—H150.9300
C2—H20.9300C16—C171.479 (4)
C3—C41.372 (5)C18—H18A0.9600
C4—C51.372 (5)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C5—C61.389 (4)
C8—S1—C987.85 (16)N2—C9—S1121.0 (2)
C3—O1—C18117.3 (3)O2—C10—N2123.3 (3)
C9—N1—C7110.0 (3)O2—C10—C11129.8 (3)
C9—N2—C10123.6 (3)N2—C10—C11106.9 (3)
C9—N2—C17126.5 (2)C16—C11—C12121.3 (3)
C10—N2—C17110.0 (3)C16—C11—C10108.7 (3)
C6—C1—C2122.0 (3)C12—C11—C10130.1 (3)
C6—C1—H1119.0C13—C12—C11117.6 (3)
C2—C1—H1119.0C13—C12—H12121.2
C3—C2—C1119.0 (3)C11—C12—H12121.2
C3—C2—H2120.5C14—C13—C12121.4 (3)
C1—C2—H2120.5C14—C13—H13119.3
O1—C3—C4116.3 (3)C12—C13—H13119.3
O1—C3—C2124.4 (3)C13—C14—C15121.2 (4)
C4—C3—C2119.3 (3)C13—C14—H14119.4
C5—C4—C3121.1 (3)C15—C14—H14119.4
C5—C4—H4119.4C16—C15—C14117.3 (3)
C3—C4—H4119.4C16—C15—H15121.3
C4—C5—C6120.7 (3)C14—C15—H15121.3
C4—C5—H5119.6C15—C16—C11121.2 (3)
C6—C5—H5119.6C15—C16—C17129.8 (3)
C1—C6—C5117.8 (3)C11—C16—C17108.9 (3)
C1—C6—C7121.0 (3)O3—C17—N2126.3 (3)
C5—C6—C7121.2 (3)O3—C17—C16128.2 (3)
C8—C7—N1114.2 (3)N2—C17—C16105.5 (2)
C8—C7—C6126.5 (3)O1—C18—H18A109.5
N1—C7—C6119.3 (3)O1—C18—H18B109.5
C7—C8—S1112.0 (3)H18A—C18—H18B109.5
C7—C8—H8124.0O1—C18—H18C109.5
S1—C8—H8124.0H18A—C18—H18C109.5
N1—C9—N2123.0 (3)H18B—C18—H18C109.5
N1—C9—S1116.0 (2)
C6—C1—C2—C30.7 (5)C8—S1—C9—N2179.8 (3)
C18—O1—C3—C4165.4 (3)C9—N2—C10—O21.0 (5)
C18—O1—C3—C215.9 (5)C17—N2—C10—O2178.8 (3)
C1—C2—C3—O1179.0 (3)C9—N2—C10—C11178.6 (2)
C1—C2—C3—C40.3 (5)C17—N2—C10—C111.6 (3)
O1—C3—C4—C5179.7 (3)O2—C10—C11—C16179.7 (4)
C2—C3—C4—C51.0 (5)N2—C10—C11—C160.0 (3)
C3—C4—C5—C60.6 (5)O2—C10—C11—C120.5 (6)
C2—C1—C6—C51.1 (5)N2—C10—C11—C12179.1 (3)
C2—C1—C6—C7176.2 (3)C16—C11—C12—C131.5 (5)
C4—C5—C6—C10.4 (5)C10—C11—C12—C13177.6 (3)
C4—C5—C6—C7176.9 (3)C11—C12—C13—C140.5 (5)
C9—N1—C7—C80.5 (4)C12—C13—C14—C151.8 (6)
C9—N1—C7—C6176.9 (3)C13—C14—C15—C161.2 (6)
C1—C6—C7—C8169.4 (3)C14—C15—C16—C110.8 (5)
C5—C6—C7—C87.8 (5)C14—C15—C16—C17179.0 (3)
C1—C6—C7—N17.7 (4)C12—C11—C16—C152.1 (5)
C5—C6—C7—N1175.1 (3)C10—C11—C16—C15177.1 (3)
N1—C7—C8—S10.5 (4)C12—C11—C16—C17179.3 (3)
C6—C7—C8—S1176.7 (2)C10—C11—C16—C171.4 (4)
C9—S1—C8—C70.2 (3)C9—N2—C17—O33.0 (5)
C7—N1—C9—N2179.5 (3)C10—N2—C17—O3176.7 (3)
C7—N1—C9—S10.3 (3)C9—N2—C17—C16177.9 (3)
C10—N2—C9—N1173.4 (3)C10—N2—C17—C162.4 (3)
C17—N2—C9—N16.9 (5)C15—C16—C17—O34.9 (6)
C10—N2—C9—S16.8 (4)C11—C16—C17—O3176.7 (3)
C17—N2—C9—S1172.9 (2)C15—C16—C17—N2176.0 (3)
C8—S1—C9—N10.1 (3)C11—C16—C17—N22.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N10.932.522.853 (5)102
C8—H8···O3i0.932.363.282 (5)171
Symmetry code: (i) x, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: s_selvanayagam@rediffmail.com.

Acknowledgements

The authors are thankful for funding support from the Department of Biotechnology North East Collaboration (DBT NEC) Research Project, Grant No. BT/252/NE/TBP/2011, New Delhi, India.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds