organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(5-Nitro-1H-indazol-1-yl)ethanone

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mboulhaoua@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 25 May 2016; accepted 9 June 2016; online 14 June 2016)

In the title compound, C9H7N3O3, paired ribbons of mol­ecules running in the a-axis direction are formed by inter­molecular C—H⋯O and offset π-stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indazole derivatives are important structural fragments in medicinal chemistry having a broad spectrum of pharmacological activities including anti-inflammatory, anti-tumor, or HIV protease inhibition (Stefan et al., 2002[Stefan, B., Carmen, G. & Kerstin, K. (2002). Bioorg. Med. Chem. 10, 2415-2417.]; Arán et al., 2005[Arán, V. J., Ochoa, C., Boiani, L., Buccino, P., Cerecetto, H., Gerpe, A., González, M., Montero, D., Nogal, J. J., Gómez-Barrio, A., Azqueta, A., López de Ceráin, A., Piro, O. E. & Castellano, E. E. (2005). Bioorg. Med. Chem. 13, 3197-3207.]; Boulouard et al., 2007[Boulouard, M., Schumann-Bard, P., Butt-Gueulle, S., Lohou, E., Stiebing, S., Collot, V. & Rault, S. (2007). Bioorg. Med. Chem. Lett. 17, 3177-3180.]) as well as exhibiting estrogen receptor (Steffan et al., 2004[Steffan, R. J., Matelan, E., Ashwell, M. A., Moore, W. J., Solvibile, W. R., Trybulski, E., Chadwick, C. C., Chippari, S., Kenney, T., Eckert, A., Borges-Marcucci, L., Keith, J. C., Xu, Z., Mosyak, L. & Harnish, D. C. (2004). J. Med. Chem. 47, 6435-6438.]), anti­fungal and anti­bacterial activities (Tandon et al., 2005[Tandon, V. K., Yadav, D. B., Chaturvedi, A. K. & Shukla, P. K. (2005). Bioorg. Med. Chem. Lett. 15, 3288-3291.]). Here we report the acetyl­ation of 5-nitro-1H-indazole using acetic anhydride in the presence of a catalytic amount of acetic acid.

In the crystal structure of the title compound (Fig. 1[link]), weak C3—H3⋯O1(1 + x, y, z) hydrogen bonds form ribbons parallel to (010) and running along the a-axis direction (Table 1[link] and Fig. 2[link]). Two such chains are associated via offset π-stacking inter­actions between a six-membered ring in one chain and a five-membered ring in the other with a 3.7361 (9) Å separation (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.99 (2) 2.36 (2) 3.1816 (17) 140.0 (16)
Symmetry code: (i) x+1, y, z.
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
Packing viewed normal to (001). C—H⋯O inter­actions are shown by black dotted lines while a representative example of the offset π-stacking is shown by a purple dotted line.

Synthesis and crystallization

A mixture of 5-nitro-1H-indazole (0.6 g, 3.68 mmol), acetic acid (2 ml) and acetic anhydride (10 ml) were heated under reflux for 24 h, after completion of the reaction (monitored by TLC), the solvent was removed under vacuum. The residue obtained was recrystallized from ethanol to afford the title compound as colourless crystals (yield: 75%; m.p. 429–431 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H7N3O3
Mr 205.18
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.6004 (3), 7.9200 (3), 9.3621 (3)
α, β, γ (°) 113.020 (1), 91.404 (2), 118.350 (2)
V3) 440.83 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.02
Crystal size (mm) 0.27 × 0.21 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.84, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 3385, 1641, 1456
Rint 0.017
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.07
No. of reflections 1641
No. of parameters 165
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.30, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-(5-Nitro-1H-indazol-1-yl)ethanone top
Crystal data top
C9H7N3O3Z = 2
Mr = 205.18F(000) = 212
Triclinic, P1Dx = 1.546 Mg m3
a = 7.6004 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.9200 (3) ÅCell parameters from 2667 reflections
c = 9.3621 (3) Åθ = 5.3–72.3°
α = 113.020 (1)°µ = 1.02 mm1
β = 91.404 (2)°T = 150 K
γ = 118.350 (2)°Thick plate, colourless
V = 440.83 (3) Å30.27 × 0.21 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
1641 independent reflections
Radiation source: INCOATEC IµS micro–focus source1456 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 5.3°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 99
Tmin = 0.84, Tmax = 0.96l = 1111
3385 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.0862P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.30 e Å3
1641 reflectionsΔρmin = 0.22 e Å3
165 parametersExtinction correction: SHELXL 2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.043 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31174 (15)0.75516 (16)0.38055 (12)0.0335 (3)
O20.94598 (19)0.7555 (2)0.94836 (13)0.0440 (3)
O31.17589 (18)0.7624 (2)0.81538 (15)0.0462 (3)
N10.59744 (16)0.74735 (18)0.33098 (13)0.0255 (3)
N20.71515 (18)0.72440 (19)0.22162 (13)0.0290 (3)
N31.01405 (19)0.75853 (19)0.83144 (14)0.0326 (3)
C10.8605 (2)0.7163 (2)0.28973 (16)0.0286 (3)
H10.957 (3)0.697 (3)0.231 (2)0.035 (4)*
C20.8463 (2)0.7338 (2)0.44671 (15)0.0250 (3)
C30.9618 (2)0.7351 (2)0.56515 (16)0.0270 (3)
H31.085 (3)0.724 (3)0.549 (2)0.045 (5)*
C40.8964 (2)0.7563 (2)0.70377 (16)0.0272 (3)
C50.7242 (2)0.7752 (2)0.72875 (16)0.0285 (3)
H50.684 (3)0.786 (3)0.829 (2)0.039 (5)*
C60.6096 (2)0.7744 (2)0.61171 (16)0.0271 (3)
H60.485 (3)0.784 (3)0.6265 (19)0.026 (4)*
C70.6741 (2)0.75373 (19)0.47014 (15)0.0236 (3)
C80.4213 (2)0.7508 (2)0.28895 (16)0.0268 (3)
C90.3841 (2)0.7473 (3)0.12989 (17)0.0326 (4)
H9A0.366 (3)0.618 (3)0.043 (2)0.050 (5)*
H9B0.499 (3)0.865 (3)0.126 (2)0.040 (5)*
H9C0.258 (3)0.750 (3)0.113 (2)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0311 (5)0.0428 (6)0.0336 (5)0.0228 (5)0.0142 (4)0.0190 (5)
O20.0520 (7)0.0565 (7)0.0307 (6)0.0286 (6)0.0132 (5)0.0264 (5)
O30.0394 (6)0.0649 (8)0.0470 (7)0.0302 (6)0.0103 (5)0.0335 (6)
N10.0258 (6)0.0300 (6)0.0226 (5)0.0162 (5)0.0090 (4)0.0117 (4)
N20.0299 (6)0.0354 (6)0.0245 (6)0.0193 (5)0.0135 (5)0.0133 (5)
N30.0335 (7)0.0320 (6)0.0296 (6)0.0144 (5)0.0047 (5)0.0156 (5)
C10.0285 (7)0.0352 (7)0.0259 (6)0.0195 (6)0.0125 (5)0.0139 (6)
C20.0248 (6)0.0253 (6)0.0245 (6)0.0132 (5)0.0086 (5)0.0108 (5)
C30.0262 (6)0.0263 (6)0.0285 (7)0.0137 (6)0.0081 (5)0.0128 (5)
C40.0292 (7)0.0254 (6)0.0243 (6)0.0120 (6)0.0054 (5)0.0121 (5)
C50.0305 (7)0.0271 (7)0.0241 (6)0.0127 (6)0.0097 (5)0.0114 (5)
C60.0272 (7)0.0267 (6)0.0257 (7)0.0135 (6)0.0105 (5)0.0110 (5)
C70.0248 (6)0.0221 (6)0.0219 (6)0.0115 (5)0.0072 (5)0.0092 (5)
C80.0243 (6)0.0262 (6)0.0280 (7)0.0134 (6)0.0065 (5)0.0104 (5)
C90.0331 (7)0.0410 (8)0.0279 (7)0.0217 (7)0.0088 (6)0.0166 (6)
Geometric parameters (Å, º) top
O1—C81.2119 (17)C3—C41.3787 (18)
O2—N31.2259 (16)C3—H30.99 (2)
O3—N31.2302 (18)C4—C51.401 (2)
N1—C71.3866 (16)C5—C61.379 (2)
N1—N21.3912 (15)C5—H50.981 (18)
N1—C81.4020 (17)C6—C71.4005 (17)
N2—C11.3018 (19)C6—H60.994 (18)
N3—C41.4646 (17)C8—C91.4959 (19)
C1—C21.4331 (18)C9—H9A0.97 (2)
C1—H10.962 (18)C9—H9B0.941 (19)
C2—C31.3915 (19)C9—H9C0.98 (2)
C2—C71.4032 (19)
C7—N1—N2111.10 (10)C6—C5—C4120.29 (12)
C7—N1—C8129.03 (11)C6—C5—H5120.1 (11)
N2—N1—C8119.79 (11)C4—C5—H5119.6 (11)
C1—N2—N1106.12 (11)C5—C6—C7116.86 (13)
O2—N3—O3123.36 (13)C5—C6—H6121.2 (9)
O2—N3—C4118.42 (12)C7—C6—H6121.9 (9)
O3—N3—C4118.21 (12)N1—C7—C6132.17 (12)
N2—C1—C2111.95 (12)N1—C7—C2105.71 (11)
N2—C1—H1119.0 (11)C6—C7—C2122.12 (13)
C2—C1—H1129.0 (11)O1—C8—N1119.14 (12)
C3—C2—C7120.90 (12)O1—C8—C9125.17 (13)
C3—C2—C1133.98 (13)N1—C8—C9115.70 (12)
C7—C2—C1105.12 (12)C8—C9—H9A111.2 (12)
C4—C3—C2116.08 (13)C8—C9—H9B110.3 (11)
C4—C3—H3123.1 (12)H9A—C9—H9B106.8 (16)
C2—C3—H3120.8 (12)C8—C9—H9C108.4 (11)
C3—C4—C5123.74 (13)H9A—C9—H9C108.9 (16)
C3—C4—N3117.76 (13)H9B—C9—H9C111.3 (16)
C5—C4—N3118.51 (12)
C7—N1—N2—C10.09 (15)C4—C5—C6—C70.1 (2)
C8—N1—N2—C1177.03 (12)N2—N1—C7—C6179.93 (13)
N1—N2—C1—C20.08 (16)C8—N1—C7—C63.1 (2)
N2—C1—C2—C3179.60 (14)N2—N1—C7—C20.06 (14)
N2—C1—C2—C70.05 (16)C8—N1—C7—C2176.72 (12)
C7—C2—C3—C40.16 (19)C5—C6—C7—N1179.88 (13)
C1—C2—C3—C4179.76 (14)C5—C6—C7—C20.27 (19)
C2—C3—C4—C50.2 (2)C3—C2—C7—N1179.71 (11)
C2—C3—C4—N3179.96 (11)C1—C2—C7—N10.01 (14)
O2—N3—C4—C3172.80 (12)C3—C2—C7—C60.4 (2)
O3—N3—C4—C36.87 (19)C1—C2—C7—C6179.89 (12)
O2—N3—C4—C57.06 (19)C7—N1—C8—O11.8 (2)
O3—N3—C4—C5173.27 (13)N2—N1—C8—O1174.72 (11)
C3—C4—C5—C60.3 (2)C7—N1—C8—C9178.53 (12)
N3—C4—C5—C6179.82 (11)N2—N1—C8—C94.93 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.99 (2)2.36 (2)3.1816 (17)140.0 (16)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationArán, V. J., Ochoa, C., Boiani, L., Buccino, P., Cerecetto, H., Gerpe, A., González, M., Montero, D., Nogal, J. J., Gómez-Barrio, A., Azqueta, A., López de Ceráin, A., Piro, O. E. & Castellano, E. E. (2005). Bioorg. Med. Chem. 13, 3197–3207.  Web of Science PubMed Google Scholar
First citationBoulouard, M., Schumann-Bard, P., Butt-Gueulle, S., Lohou, E., Stiebing, S., Collot, V. & Rault, S. (2007). Bioorg. Med. Chem. Lett. 17, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStefan, B., Carmen, G. & Kerstin, K. (2002). Bioorg. Med. Chem. 10, 2415–2417.  Web of Science PubMed Google Scholar
First citationSteffan, R. J., Matelan, E., Ashwell, M. A., Moore, W. J., Solvibile, W. R., Trybulski, E., Chadwick, C. C., Chippari, S., Kenney, T., Eckert, A., Borges-Marcucci, L., Keith, J. C., Xu, Z., Mosyak, L. & Harnish, D. C. (2004). J. Med. Chem. 47, 6435–6438.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTandon, V. K., Yadav, D. B., Chaturvedi, A. K. & Shukla, P. K. (2005). Bioorg. Med. Chem. Lett. 15, 3288–3291.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds