organic compounds
1-(5-Nitro-1H-indazol-1-yl)ethanone
aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mboulhaoua@gmail.com
In the title compound, C9H7N3O3, paired ribbons of molecules running in the a-axis direction are formed by intermolecular C—H⋯O and offset π-stacking interactions.
Keywords: crystal structure; indazole; π-stacking.
CCDC reference: 1484397
Structure description
Indazole derivatives are important structural fragments in medicinal chemistry having a broad spectrum of pharmacological activities including anti-inflammatory, anti-tumor, or HIV protease inhibition (Stefan et al., 2002; Arán et al., 2005; Boulouard et al., 2007) as well as exhibiting estrogen receptor (Steffan et al., 2004), antifungal and antibacterial activities (Tandon et al., 2005). Here we report the acetylation of 5-nitro-1H-indazole using acetic anhydride in the presence of a catalytic amount of acetic acid.
In the ), weak C3—H3⋯O1(1 + x, y, z) hydrogen bonds form ribbons parallel to (010) and running along the a-axis direction (Table 1 and Fig. 2). Two such chains are associated via offset π-stacking interactions between a six-membered ring in one chain and a five-membered ring in the other with a 3.7361 (9) Å separation (Fig. 2).
of the title compound (Fig. 1Synthesis and crystallization
A mixture of 5-nitro-1H-indazole (0.6 g, 3.68 mmol), acetic acid (2 ml) and acetic anhydride (10 ml) were heated under reflux for 24 h, after completion of the reaction (monitored by TLC), the solvent was removed under vacuum. The residue obtained was recrystallized from ethanol to afford the title compound as colourless crystals (yield: 75%; m.p. 429–431 K).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1484397
10.1107/S2414314616009391/zq4008sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616009391/zq4008Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616009391/zq4008Isup3.cdx
Supporting information file. DOI: 10.1107/S2414314616009391/zq4008Isup5.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H7N3O3 | Z = 2 |
Mr = 205.18 | F(000) = 212 |
Triclinic, P1 | Dx = 1.546 Mg m−3 |
a = 7.6004 (3) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 7.9200 (3) Å | Cell parameters from 2667 reflections |
c = 9.3621 (3) Å | θ = 5.3–72.3° |
α = 113.020 (1)° | µ = 1.02 mm−1 |
β = 91.404 (2)° | T = 150 K |
γ = 118.350 (2)° | Thick plate, colourless |
V = 440.83 (3) Å3 | 0.27 × 0.21 × 0.04 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 1641 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 1456 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.017 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.3°, θmin = 5.3° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −9→9 |
Tmin = 0.84, Tmax = 0.96 | l = −11→11 |
3385 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0655P)2 + 0.0862P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.105 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.30 e Å−3 |
1641 reflections | Δρmin = −0.22 e Å−3 |
165 parameters | Extinction correction: SHELXL 2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.043 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.31174 (15) | 0.75516 (16) | 0.38055 (12) | 0.0335 (3) | |
O2 | 0.94598 (19) | 0.7555 (2) | 0.94836 (13) | 0.0440 (3) | |
O3 | 1.17589 (18) | 0.7624 (2) | 0.81538 (15) | 0.0462 (3) | |
N1 | 0.59744 (16) | 0.74735 (18) | 0.33098 (13) | 0.0255 (3) | |
N2 | 0.71515 (18) | 0.72440 (19) | 0.22162 (13) | 0.0290 (3) | |
N3 | 1.01405 (19) | 0.75853 (19) | 0.83144 (14) | 0.0326 (3) | |
C1 | 0.8605 (2) | 0.7163 (2) | 0.28973 (16) | 0.0286 (3) | |
H1 | 0.957 (3) | 0.697 (3) | 0.231 (2) | 0.035 (4)* | |
C2 | 0.8463 (2) | 0.7338 (2) | 0.44671 (15) | 0.0250 (3) | |
C3 | 0.9618 (2) | 0.7351 (2) | 0.56515 (16) | 0.0270 (3) | |
H3 | 1.085 (3) | 0.724 (3) | 0.549 (2) | 0.045 (5)* | |
C4 | 0.8964 (2) | 0.7563 (2) | 0.70377 (16) | 0.0272 (3) | |
C5 | 0.7242 (2) | 0.7752 (2) | 0.72875 (16) | 0.0285 (3) | |
H5 | 0.684 (3) | 0.786 (3) | 0.829 (2) | 0.039 (5)* | |
C6 | 0.6096 (2) | 0.7744 (2) | 0.61171 (16) | 0.0271 (3) | |
H6 | 0.485 (3) | 0.784 (3) | 0.6265 (19) | 0.026 (4)* | |
C7 | 0.6741 (2) | 0.75373 (19) | 0.47014 (15) | 0.0236 (3) | |
C8 | 0.4213 (2) | 0.7508 (2) | 0.28895 (16) | 0.0268 (3) | |
C9 | 0.3841 (2) | 0.7473 (3) | 0.12989 (17) | 0.0326 (4) | |
H9A | 0.366 (3) | 0.618 (3) | 0.043 (2) | 0.050 (5)* | |
H9B | 0.499 (3) | 0.865 (3) | 0.126 (2) | 0.040 (5)* | |
H9C | 0.258 (3) | 0.750 (3) | 0.113 (2) | 0.043 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0311 (5) | 0.0428 (6) | 0.0336 (5) | 0.0228 (5) | 0.0142 (4) | 0.0190 (5) |
O2 | 0.0520 (7) | 0.0565 (7) | 0.0307 (6) | 0.0286 (6) | 0.0132 (5) | 0.0264 (5) |
O3 | 0.0394 (6) | 0.0649 (8) | 0.0470 (7) | 0.0302 (6) | 0.0103 (5) | 0.0335 (6) |
N1 | 0.0258 (6) | 0.0300 (6) | 0.0226 (5) | 0.0162 (5) | 0.0090 (4) | 0.0117 (4) |
N2 | 0.0299 (6) | 0.0354 (6) | 0.0245 (6) | 0.0193 (5) | 0.0135 (5) | 0.0133 (5) |
N3 | 0.0335 (7) | 0.0320 (6) | 0.0296 (6) | 0.0144 (5) | 0.0047 (5) | 0.0156 (5) |
C1 | 0.0285 (7) | 0.0352 (7) | 0.0259 (6) | 0.0195 (6) | 0.0125 (5) | 0.0139 (6) |
C2 | 0.0248 (6) | 0.0253 (6) | 0.0245 (6) | 0.0132 (5) | 0.0086 (5) | 0.0108 (5) |
C3 | 0.0262 (6) | 0.0263 (6) | 0.0285 (7) | 0.0137 (6) | 0.0081 (5) | 0.0128 (5) |
C4 | 0.0292 (7) | 0.0254 (6) | 0.0243 (6) | 0.0120 (6) | 0.0054 (5) | 0.0121 (5) |
C5 | 0.0305 (7) | 0.0271 (7) | 0.0241 (6) | 0.0127 (6) | 0.0097 (5) | 0.0114 (5) |
C6 | 0.0272 (7) | 0.0267 (6) | 0.0257 (7) | 0.0135 (6) | 0.0105 (5) | 0.0110 (5) |
C7 | 0.0248 (6) | 0.0221 (6) | 0.0219 (6) | 0.0115 (5) | 0.0072 (5) | 0.0092 (5) |
C8 | 0.0243 (6) | 0.0262 (6) | 0.0280 (7) | 0.0134 (6) | 0.0065 (5) | 0.0104 (5) |
C9 | 0.0331 (7) | 0.0410 (8) | 0.0279 (7) | 0.0217 (7) | 0.0088 (6) | 0.0166 (6) |
O1—C8 | 1.2119 (17) | C3—C4 | 1.3787 (18) |
O2—N3 | 1.2259 (16) | C3—H3 | 0.99 (2) |
O3—N3 | 1.2302 (18) | C4—C5 | 1.401 (2) |
N1—C7 | 1.3866 (16) | C5—C6 | 1.379 (2) |
N1—N2 | 1.3912 (15) | C5—H5 | 0.981 (18) |
N1—C8 | 1.4020 (17) | C6—C7 | 1.4005 (17) |
N2—C1 | 1.3018 (19) | C6—H6 | 0.994 (18) |
N3—C4 | 1.4646 (17) | C8—C9 | 1.4959 (19) |
C1—C2 | 1.4331 (18) | C9—H9A | 0.97 (2) |
C1—H1 | 0.962 (18) | C9—H9B | 0.941 (19) |
C2—C3 | 1.3915 (19) | C9—H9C | 0.98 (2) |
C2—C7 | 1.4032 (19) | ||
C7—N1—N2 | 111.10 (10) | C6—C5—C4 | 120.29 (12) |
C7—N1—C8 | 129.03 (11) | C6—C5—H5 | 120.1 (11) |
N2—N1—C8 | 119.79 (11) | C4—C5—H5 | 119.6 (11) |
C1—N2—N1 | 106.12 (11) | C5—C6—C7 | 116.86 (13) |
O2—N3—O3 | 123.36 (13) | C5—C6—H6 | 121.2 (9) |
O2—N3—C4 | 118.42 (12) | C7—C6—H6 | 121.9 (9) |
O3—N3—C4 | 118.21 (12) | N1—C7—C6 | 132.17 (12) |
N2—C1—C2 | 111.95 (12) | N1—C7—C2 | 105.71 (11) |
N2—C1—H1 | 119.0 (11) | C6—C7—C2 | 122.12 (13) |
C2—C1—H1 | 129.0 (11) | O1—C8—N1 | 119.14 (12) |
C3—C2—C7 | 120.90 (12) | O1—C8—C9 | 125.17 (13) |
C3—C2—C1 | 133.98 (13) | N1—C8—C9 | 115.70 (12) |
C7—C2—C1 | 105.12 (12) | C8—C9—H9A | 111.2 (12) |
C4—C3—C2 | 116.08 (13) | C8—C9—H9B | 110.3 (11) |
C4—C3—H3 | 123.1 (12) | H9A—C9—H9B | 106.8 (16) |
C2—C3—H3 | 120.8 (12) | C8—C9—H9C | 108.4 (11) |
C3—C4—C5 | 123.74 (13) | H9A—C9—H9C | 108.9 (16) |
C3—C4—N3 | 117.76 (13) | H9B—C9—H9C | 111.3 (16) |
C5—C4—N3 | 118.51 (12) | ||
C7—N1—N2—C1 | 0.09 (15) | C4—C5—C6—C7 | 0.1 (2) |
C8—N1—N2—C1 | −177.03 (12) | N2—N1—C7—C6 | −179.93 (13) |
N1—N2—C1—C2 | −0.08 (16) | C8—N1—C7—C6 | −3.1 (2) |
N2—C1—C2—C3 | −179.60 (14) | N2—N1—C7—C2 | −0.06 (14) |
N2—C1—C2—C7 | 0.05 (16) | C8—N1—C7—C2 | 176.72 (12) |
C7—C2—C3—C4 | 0.16 (19) | C5—C6—C7—N1 | −179.88 (13) |
C1—C2—C3—C4 | 179.76 (14) | C5—C6—C7—C2 | 0.27 (19) |
C2—C3—C4—C5 | 0.2 (2) | C3—C2—C7—N1 | 179.71 (11) |
C2—C3—C4—N3 | −179.96 (11) | C1—C2—C7—N1 | 0.01 (14) |
O2—N3—C4—C3 | −172.80 (12) | C3—C2—C7—C6 | −0.4 (2) |
O3—N3—C4—C3 | 6.87 (19) | C1—C2—C7—C6 | 179.89 (12) |
O2—N3—C4—C5 | 7.06 (19) | C7—N1—C8—O1 | −1.8 (2) |
O3—N3—C4—C5 | −173.27 (13) | N2—N1—C8—O1 | 174.72 (11) |
C3—C4—C5—C6 | −0.3 (2) | C7—N1—C8—C9 | 178.53 (12) |
N3—C4—C5—C6 | 179.82 (11) | N2—N1—C8—C9 | −4.93 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.99 (2) | 2.36 (2) | 3.1816 (17) | 140.0 (16) |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Arán, V. J., Ochoa, C., Boiani, L., Buccino, P., Cerecetto, H., Gerpe, A., González, M., Montero, D., Nogal, J. J., Gómez-Barrio, A., Azqueta, A., López de Ceráin, A., Piro, O. E. & Castellano, E. E. (2005). Bioorg. Med. Chem. 13, 3197–3207. Web of Science PubMed Google Scholar
Boulouard, M., Schumann-Bard, P., Butt-Gueulle, S., Lohou, E., Stiebing, S., Collot, V. & Rault, S. (2007). Bioorg. Med. Chem. Lett. 17, 3177–3180. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stefan, B., Carmen, G. & Kerstin, K. (2002). Bioorg. Med. Chem. 10, 2415–2417. Web of Science PubMed Google Scholar
Steffan, R. J., Matelan, E., Ashwell, M. A., Moore, W. J., Solvibile, W. R., Trybulski, E., Chadwick, C. C., Chippari, S., Kenney, T., Eckert, A., Borges-Marcucci, L., Keith, J. C., Xu, Z., Mosyak, L. & Harnish, D. C. (2004). J. Med. Chem. 47, 6435–6438. Web of Science CrossRef PubMed CAS Google Scholar
Tandon, V. K., Yadav, D. B., Chaturvedi, A. K. & Shukla, P. K. (2005). Bioorg. Med. Chem. Lett. 15, 3288–3291. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.