organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Chloro-N-(4-phenyl-1,3-thia­zol-2-yl)acetamide

aDrug Discovery Lab, Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, bDrug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781 035, India, cDepartment of Pharmacology, PSG College of Pharmacy, Coimbatore 641 004, India, and dPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: profskabilan@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 24 May 2016; accepted 30 May 2016; online 3 June 2016)

The title acetamide, C11H9ClN2OS, crystallizes with two independent mol­ecules in the asymmetric unit whose geometrical features are similar. The phenyl ring is oriented at angles of 2.5 (1) and 6.2 (1)° with respect to the thia­zole ring in the two mol­ecules. In the crystal, mol­ecules are linked via C—H⋯N hydrogen bonds which form C(10) chains along the [-100] direction. The chains are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming C(8) chains along the [100] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Acetamide derivatives are new potential PET tracers for imaging nucleotide pyrophosphatase/phospho­diesterase (Gao et al., 2016[Gao, M., Wang, M. & Zheng, Q. H. (2016). Bioorg. Med. Chem. Lett. 26, 1371-1375.]). These derivatives act as anti­cholinesterase agents for a possible role in the management of Alzheimer's disease (Sun et al., 2016[Sun, Z. Q., Tu, L. X., Zhuo, F. J. & Liu, S. X. (2016). Bioorg. Med. Chem. Lett. 26, 747-750.]). Acetamide derivatives possess anti­convulsant, anti­depressant (Zhen et al., 2015[Zhen, X., Peng, Z., Zhao, S., Han, Y., Jin, Q. & Guan, L. (2015). Acta Pharm. Sin. B. 5, 343-349.]) and anti-HIV (Huang et al., 2016[Huang, B., Li, X., Zhan, P., De Clercq, E., Daelemans, D., Pannecouque, C. & Liu, X. (2016). Chem. Biol. Drug Des. 87, 283-289.]) activities. In view of the many inter­esting applications of acetamide derivatives we synthesized the title compound and report herein its crystal structure.

The X-ray study confirmed the mol­ecular structure and atomic connectivity, as illustrated in Fig. 1[link]. The asymmetric unit contains two mol­ecules (Fig. 1[link]); their corresponding bond lengths and bond angles are in good agreement. Fig. 2[link] shows a superposition of the thia­zole ring of both the mol­ecules using Qmol (Gans & Shalloway, 2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-9, 609.]); the r.m.s. deviation is 0.734 Å. The phenyl ring and thia­zole rings are coplanar with the maximum deviation of 0.007 (3) and 0.003 (3) Å for atom C9 in mol­ecules A and B, respectively. The phenyl ring is oriented at angles of 2.5 (1) and 6.2 (1)°, respectively, to the thia­zole ring in mol­ecules A and B. The mol­ecular structure is influenced by four intra­molecular hydrogen bonds of N—H⋯O, C—H⋯N and C—H⋯O types (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯N1′i 0.97 2.62 3.565 (4) 165
N2′—H2′⋯O1ii 0.86 1.98 2.835 (3) 172
C11′—H11C⋯O1ii 0.97 2.48 3.329 (3) 146
N2—H2⋯O1′ 0.86 1.98 2.825 (3) 168
C1—H1⋯N1 0.93 2.54 2.869 (4) 101
C1′—H1′⋯N1′ 0.93 2.56 2.880 (4) 101
C11—H11B⋯O1′ 0.97 2.55 3.204 (3) 125
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Superposition of mol­ecule A (red) with the mol­ecule B (purple).

In the crystal, C—H⋯N hydrogen bonds link the mol­ecules, forming C(10) chains propagating along [[\overline{1}]00]. In addition to this, N—H⋯O and C—H⋯O hydrogen bonds also link the mol­ecules into C(8) chains propagating along [100]; see Fig. 3[link].

[Figure 3]
Figure 3
Crystal packing of the title compound, viewed along the a axis. The C—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in these hydrogen bonds have been omitted.

Synthesis and crystallization

To a solution of 4-phenyl­thia­zol-2-amine (1.5 g, 8.52 mmol) in dry toluene (25 ml), K2CO3 (2.32 g, 17.04 mmol) and chloro­acetyl chloride (0.67 ml, 8.52 mmol) was added. The reaction mixture was heated to reflux for 3 h. After completion of the reaction (monitored by pre-coated TLC), the reaction mixture was cooled to RT and diluted with DCM (45 ml). The organic layer was washed with saturated NaHCO3 solution, water (10 ml × 3) and dried over Na2SO4. The filtrate was concentrated and the crude product mass was purified by precipitation using petroleum ether and diethyl ether (3:1) to give a colorless solid. This solid was recrystallized in ethyl acetate to yield colorless crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H9ClN2OS
Mr 252.71
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.0406 (9), 9.2313 (14), 15.9898 (17)
α, β, γ (°) 85.693 (19), 76.448 (19), 87.082 (19)
V3) 1149.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.22 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 6721, 5129, 3519
Rint 0.045
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.174, 1.03
No. of reflections 5129
No. of parameters 289
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.52
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-Chloro-N-(4-phenyl-1,3-thiazol-2-yl)acetamide top
Crystal data top
C11H9ClN2OSZ = 4
Mr = 252.71F(000) = 520
Triclinic, P1Dx = 1.460 Mg m3
a = 8.0406 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2313 (14) ÅCell parameters from 4218 reflections
c = 15.9898 (17) Åθ = 3.2–26.8°
α = 85.693 (19)°µ = 0.49 mm1
β = 76.448 (19)°T = 296 K
γ = 87.082 (19)°Block, colourless
V = 1149.9 (3) Å30.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.045
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.2°
ω scansh = 1010
6721 measured reflectionsk = 117
5129 independent reflectionsl = 2019
3519 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0971P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5129 reflectionsΔρmax = 0.44 e Å3
289 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41465 (9)0.74959 (7)0.15473 (5)0.0538 (2)
O10.6150 (3)0.66650 (18)0.27078 (12)0.0597 (5)
N10.4150 (3)1.0270 (2)0.15895 (13)0.0471 (5)
N20.5584 (3)0.9072 (2)0.25671 (14)0.0519 (5)
H20.56800.98930.27690.062*
Cl10.94512 (12)0.88155 (11)0.28862 (7)0.0922 (3)
C10.2855 (4)1.2645 (3)0.06344 (19)0.0622 (7)
H10.33881.28340.10700.075*
C20.2265 (5)1.3788 (4)0.0159 (2)0.0750 (9)
H2A0.24101.47390.02770.090*
C30.1468 (4)1.3534 (4)0.0483 (2)0.0714 (9)
H30.10691.43070.07990.086*
C40.1266 (4)1.2125 (4)0.0654 (2)0.0695 (8)
H40.07211.19440.10870.083*
C50.1860 (3)1.0988 (3)0.01938 (18)0.0599 (7)
H50.17261.00430.03250.072*
C60.2660 (3)1.1213 (3)0.04659 (16)0.0493 (6)
C70.3300 (3)0.9994 (3)0.09627 (16)0.0467 (5)
C80.3176 (3)0.8557 (3)0.08623 (18)0.0554 (6)
H80.26330.81970.04720.066*
C90.4664 (3)0.9065 (2)0.19303 (16)0.0460 (5)
C100.6333 (4)0.7901 (3)0.28888 (16)0.0518 (6)
C110.7436 (5)0.8203 (3)0.3497 (2)0.0696 (8)
H11A0.76000.73250.38450.084*
H11B0.68770.89400.38790.084*
S1'0.69249 (11)1.20434 (7)0.49270 (4)0.0608 (2)
O1'0.6147 (3)1.15393 (19)0.33948 (13)0.0642 (5)
N1'0.7240 (3)1.4819 (2)0.47406 (13)0.0466 (5)
N2'0.6465 (3)1.3901 (2)0.35679 (13)0.0468 (5)
H2'0.64061.47730.33440.056*
Cl1'0.76597 (12)1.26828 (10)0.14499 (5)0.0814 (3)
C1'0.8038 (4)1.6899 (3)0.58315 (19)0.0668 (8)
H1'0.76531.72290.53440.080*
C2'0.8529 (5)1.7902 (4)0.6332 (2)0.0803 (10)
H2'10.84951.88900.61680.096*
C3'0.9056 (4)1.7439 (4)0.7057 (2)0.0743 (9)
H3'0.93671.81080.73950.089*
C4'0.9128 (4)1.6001 (4)0.7287 (2)0.0722 (9)
H4'0.94941.56880.77830.087*
C5'0.8667 (4)1.4990 (4)0.67955 (18)0.0635 (7)
H5'0.87251.40060.69640.076*
C6'0.8115 (3)1.5434 (3)0.60490 (15)0.0499 (6)
C8'0.7508 (4)1.2908 (3)0.57165 (17)0.0616 (7)
H8'0.77191.24400.62190.074*
C7'0.7626 (3)1.4359 (3)0.55226 (16)0.0484 (6)
C9'0.6865 (3)1.3722 (2)0.43644 (15)0.0442 (5)
C10'0.6162 (3)1.2810 (3)0.31178 (17)0.0493 (6)
C11'0.5852 (4)1.3246 (3)0.22428 (18)0.0606 (7)
H11C0.56751.42920.21800.073*
H11D0.48361.27920.21720.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0635 (4)0.0347 (3)0.0662 (4)0.0070 (3)0.0186 (3)0.0062 (3)
O10.0932 (14)0.0277 (9)0.0627 (11)0.0032 (8)0.0277 (10)0.0004 (7)
N10.0563 (12)0.0366 (11)0.0501 (11)0.0005 (8)0.0161 (10)0.0035 (8)
N20.0778 (14)0.0266 (10)0.0575 (12)0.0018 (9)0.0284 (11)0.0016 (8)
Cl10.0911 (6)0.0810 (6)0.1208 (8)0.0078 (5)0.0587 (6)0.0006 (5)
C10.0819 (19)0.0519 (16)0.0561 (15)0.0180 (14)0.0240 (15)0.0127 (12)
C20.100 (2)0.0563 (18)0.0677 (18)0.0238 (16)0.0231 (18)0.0052 (14)
C30.0649 (18)0.082 (2)0.0639 (18)0.0227 (16)0.0162 (15)0.0076 (16)
C40.0519 (16)0.096 (3)0.0615 (17)0.0006 (15)0.0196 (14)0.0078 (16)
C50.0510 (14)0.0690 (18)0.0610 (16)0.0056 (12)0.0153 (13)0.0022 (13)
C60.0421 (12)0.0552 (15)0.0483 (13)0.0050 (10)0.0075 (11)0.0026 (11)
C70.0437 (12)0.0469 (14)0.0483 (13)0.0017 (10)0.0079 (11)0.0059 (10)
C80.0569 (15)0.0481 (15)0.0657 (16)0.0042 (11)0.0208 (13)0.0100 (12)
C90.0536 (13)0.0337 (12)0.0492 (12)0.0032 (10)0.0092 (11)0.0015 (10)
C100.0728 (16)0.0315 (12)0.0519 (14)0.0019 (11)0.0179 (13)0.0020 (10)
C110.111 (2)0.0408 (15)0.0692 (18)0.0006 (15)0.0469 (18)0.0018 (13)
S1'0.0902 (5)0.0375 (4)0.0573 (4)0.0053 (3)0.0232 (4)0.0022 (3)
O1'0.1028 (15)0.0296 (9)0.0690 (12)0.0025 (9)0.0376 (11)0.0031 (8)
N1'0.0553 (12)0.0376 (10)0.0483 (11)0.0034 (8)0.0133 (9)0.0060 (8)
N2'0.0636 (12)0.0273 (9)0.0530 (11)0.0020 (8)0.0204 (10)0.0024 (8)
Cl1'0.0989 (6)0.0854 (6)0.0611 (5)0.0138 (5)0.0171 (4)0.0099 (4)
C1'0.090 (2)0.0596 (18)0.0573 (16)0.0143 (15)0.0277 (16)0.0062 (13)
C2'0.115 (3)0.062 (2)0.070 (2)0.0206 (18)0.028 (2)0.0120 (16)
C3'0.078 (2)0.086 (2)0.0618 (18)0.0208 (17)0.0133 (16)0.0223 (17)
C4'0.074 (2)0.092 (3)0.0545 (16)0.0065 (17)0.0194 (15)0.0140 (16)
C5'0.0713 (18)0.0669 (19)0.0530 (15)0.0022 (14)0.0145 (14)0.0088 (13)
C6'0.0498 (13)0.0573 (15)0.0399 (12)0.0065 (11)0.0022 (11)0.0089 (10)
C8'0.0834 (19)0.0532 (17)0.0498 (14)0.0042 (13)0.0200 (14)0.0033 (12)
C7'0.0498 (13)0.0512 (14)0.0428 (12)0.0022 (10)0.0074 (11)0.0044 (10)
C9'0.0510 (13)0.0352 (12)0.0458 (12)0.0007 (9)0.0103 (11)0.0032 (9)
C10'0.0606 (15)0.0331 (13)0.0576 (14)0.0004 (10)0.0203 (12)0.0046 (10)
C11'0.085 (2)0.0399 (14)0.0648 (16)0.0004 (12)0.0335 (15)0.0056 (12)
Geometric parameters (Å, º) top
S1—C81.712 (3)S1'—C8'1.708 (3)
S1—C91.720 (2)S1'—C9'1.737 (2)
O1—C101.222 (3)O1'—C10'1.222 (3)
N1—C91.294 (3)N1'—C9'1.298 (3)
N1—C71.383 (3)N1'—C7'1.389 (3)
N2—C101.338 (3)N2'—C10'1.344 (3)
N2—C91.393 (3)N2'—C9'1.381 (3)
N2—H20.8600N2'—H2'0.8600
Cl1—C111.780 (4)Cl1'—C11'1.774 (3)
C1—C21.384 (4)C1'—C6'1.373 (4)
C1—C61.392 (4)C1'—C2'1.397 (4)
C1—H10.9300C1'—H1'0.9300
C2—C31.370 (5)C2'—C3'1.358 (5)
C2—H2A0.9300C2'—H2'10.9300
C3—C41.375 (5)C3'—C4'1.352 (5)
C3—H30.9300C3'—H3'0.9300
C4—C51.367 (4)C4'—C5'1.381 (4)
C4—H40.9300C4'—H4'0.9300
C5—C61.391 (4)C5'—C6'1.395 (4)
C5—H50.9300C5'—H5'0.9300
C6—C71.470 (3)C6'—C7'1.473 (4)
C7—C81.359 (4)C8'—C7'1.354 (4)
C8—H80.9300C8'—H8'0.9300
C10—C111.510 (4)C10'—C11'1.500 (4)
C11—H11A0.9700C11'—H11C0.9700
C11—H11B0.9700C11'—H11D0.9700
C8—S1—C988.17 (12)C8'—S1'—C9'88.18 (13)
C9—N1—C7110.4 (2)C9'—N1'—C7'110.5 (2)
C10—N2—C9125.1 (2)C10'—N2'—C9'124.7 (2)
C10—N2—H2117.4C10'—N2'—H2'117.6
C9—N2—H2117.4C9'—N2'—H2'117.6
C2—C1—C6120.6 (3)C6'—C1'—C2'121.0 (3)
C2—C1—H1119.7C6'—C1'—H1'119.5
C6—C1—H1119.7C2'—C1'—H1'119.5
C3—C2—C1120.7 (3)C3'—C2'—C1'120.1 (3)
C3—C2—H2A119.7C3'—C2'—H2'1119.9
C1—C2—H2A119.7C1'—C2'—H2'1119.9
C2—C3—C4119.3 (3)C4'—C3'—C2'119.8 (3)
C2—C3—H3120.4C4'—C3'—H3'120.1
C4—C3—H3120.4C2'—C3'—H3'120.1
C5—C4—C3120.5 (3)C3'—C4'—C5'120.9 (3)
C5—C4—H4119.8C3'—C4'—H4'119.5
C3—C4—H4119.8C5'—C4'—H4'119.5
C4—C5—C6121.5 (3)C4'—C5'—C6'120.5 (3)
C4—C5—H5119.2C4'—C5'—H5'119.7
C6—C5—H5119.2C6'—C5'—H5'119.7
C5—C6—C1117.5 (3)C1'—C6'—C5'117.6 (3)
C5—C6—C7121.7 (3)C1'—C6'—C7'121.8 (2)
C1—C6—C7120.8 (2)C5'—C6'—C7'120.6 (3)
C8—C7—N1114.1 (2)C7'—C8'—S1'111.8 (2)
C8—C7—C6126.2 (2)C7'—C8'—H8'124.1
N1—C7—C6119.7 (2)S1'—C8'—H8'124.1
C7—C8—S1111.3 (2)C8'—C7'—N1'114.1 (2)
C7—C8—H8124.3C8'—C7'—C6'126.6 (2)
S1—C8—H8124.3N1'—C7'—C6'119.3 (2)
N1—C9—N2120.7 (2)N1'—C9'—N2'121.4 (2)
N1—C9—S1116.1 (2)N1'—C9'—S1'115.38 (19)
N2—C9—S1123.19 (18)N2'—C9'—S1'123.22 (18)
O1—C10—N2123.0 (3)O1'—C10'—N2'122.7 (2)
O1—C10—C11121.6 (2)O1'—C10'—C11'121.6 (2)
N2—C10—C11115.4 (2)N2'—C10'—C11'115.7 (2)
C10—C11—Cl1109.2 (2)C10'—C11'—Cl1'108.7 (2)
C10—C11—H11A109.8C10'—C11'—H11C110.0
Cl1—C11—H11A109.8Cl1'—C11'—H11C110.0
C10—C11—H11B109.8C10'—C11'—H11D110.0
Cl1—C11—H11B109.8Cl1'—C11'—H11D110.0
H11A—C11—H11B108.3H11C—C11'—H11D108.3
C6—C1—C2—C30.4 (5)C6'—C1'—C2'—C3'1.5 (5)
C1—C2—C3—C40.3 (5)C1'—C2'—C3'—C4'1.0 (5)
C2—C3—C4—C50.4 (5)C2'—C3'—C4'—C5'0.2 (5)
C3—C4—C5—C60.9 (4)C3'—C4'—C5'—C6'0.0 (5)
C4—C5—C6—C10.8 (4)C2'—C1'—C6'—C5'1.3 (5)
C4—C5—C6—C7180.0 (2)C2'—C1'—C6'—C7'179.1 (3)
C2—C1—C6—C50.2 (4)C4'—C5'—C6'—C1'0.5 (4)
C2—C1—C6—C7179.4 (3)C4'—C5'—C6'—C7'179.9 (3)
C9—N1—C7—C81.1 (3)C9'—S1'—C8'—C7'0.1 (2)
C9—N1—C7—C6177.7 (2)S1'—C8'—C7'—N1'0.5 (3)
C5—C6—C7—C81.3 (4)S1'—C8'—C7'—C6'179.2 (2)
C1—C6—C7—C8179.5 (3)C9'—N1'—C7'—C8'0.7 (3)
C5—C6—C7—N1177.4 (2)C9'—N1'—C7'—C6'179.0 (2)
C1—C6—C7—N11.8 (4)C1'—C6'—C7'—C8'173.7 (3)
N1—C7—C8—S10.6 (3)C5'—C6'—C7'—C8'5.9 (4)
C6—C7—C8—S1178.07 (19)C1'—C6'—C7'—N1'6.6 (4)
C9—S1—C8—C70.0 (2)C5'—C6'—C7'—N1'173.8 (2)
C7—N1—C9—N2178.7 (2)C7'—N1'—C9'—N2'178.8 (2)
C7—N1—C9—S11.1 (3)C7'—N1'—C9'—S1'0.7 (3)
C10—N2—C9—N1172.1 (2)C10'—N2'—C9'—N1'176.0 (2)
C10—N2—C9—S17.7 (4)C10'—N2'—C9'—S1'3.5 (4)
C8—S1—C9—N10.7 (2)C8'—S1'—C9'—N1'0.3 (2)
C8—S1—C9—N2179.2 (2)C8'—S1'—C9'—N2'179.1 (2)
C9—N2—C10—O16.9 (4)C9'—N2'—C10'—O1'3.0 (4)
C9—N2—C10—C11173.0 (2)C9'—N2'—C10'—C11'176.5 (2)
O1—C10—C11—Cl1100.9 (3)O1'—C10'—C11'—Cl1'71.5 (3)
N2—C10—C11—Cl179.0 (3)N2'—C10'—C11'—Cl1'108.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···N1i0.972.623.565 (4)165
N2—H2···O1ii0.861.982.835 (3)172
C11—H11C···O1ii0.972.483.329 (3)146
N2—H2···O10.861.982.825 (3)168
C1—H1···N10.932.542.869 (4)101
C1—H1···N10.932.562.880 (4)101
C11—H11B···O10.972.553.204 (3)125
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: s_selvanayagam@rediffmail.com.

Acknowledgements

The authors are thankful for the funding support from the Department of Biotechnology – North East Collaboration (DBT–NEC) Research Project, Grant No. BT/252/NE/TBP/2011, New Delhi, India.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–9, 609.  Google Scholar
First citationGao, M., Wang, M. & Zheng, Q. H. (2016). Bioorg. Med. Chem. Lett. 26, 1371–1375.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuang, B., Li, X., Zhan, P., De Clercq, E., Daelemans, D., Pannecouque, C. & Liu, X. (2016). Chem. Biol. Drug Des. 87, 283–289.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Z. Q., Tu, L. X., Zhuo, F. J. & Liu, S. X. (2016). Bioorg. Med. Chem. Lett. 26, 747–750.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhen, X., Peng, Z., Zhao, S., Han, Y., Jin, Q. & Guan, L. (2015). Acta Pharm. Sin. B. 5, 343–349.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds