organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(5Z)-5-(4-Chloro­benzyl­­idene)-1,3-thia­zolidine-2,4-dione

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 16 June 2016; accepted 17 June 2016; online 24 June 2016)

In the title compound, C10H6ClNO2S, the dihedral angle between the planes of the 4-chloro­phenyl and thia­zolidine rings is 8.62 (9)°. In the crystal, mol­ecules form undulating ribbons running approximately parallel to (101) through N—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thia­zolidinedione scaffold compounds (TDZs), known as glitazones, are a class of medications used in the treatment of diabetes mellitus type 2. TZDs are an important heterocyclic ring system and have therapeutic importance when combined with other heterocyclic rings, as they can produce a wide range of biological activities, such as anti-inflammatory (Barros et al., 2008[Barros, C. D., Amato, A. A., Oliveira, T. B., Iannini, K. B. R., Silva, A. L., Silva, T. G., Leite, E. S., Hernandes, M. Z., Lima, M. C. A., Galdino, S. L., Neves, F. A. R. & Pitta, I. R. (2008). Bioorg. Med. Chem. 18, 3805-3811.]), anti­tubercular (Pattan et al., 2008[Pattan, S. R., Alagwadi, K. R., Bhat, A. R., Reddy, V. V. K., Pattan, J. S., Khade, A. B. & &Bhatt, K. G. (2008). Indian Drugs, 45, 532-535.]), anti­microbial (Oya et al., 2007[Oya, B., Ozen, O., Arzu, M., Engin, K. & Rahmiye, E. (2007). Bioorg. Med. Chem. 15, 6012-6017.]) and cytotoxic (Shankar & Kallanagouda, 2012[Shankar, G. A. & Kallanagouda, R. A. (2012). Med. Chem. Res. 21, 816-824.]). In this context, we report here the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule, showing the atom labelling scheme and 50% probability ellipsoids.

The dihedral angle between the 4-chloro­phenyl and thia­zolidine rings is 8.62 (9)°. The mol­ecules form undulating ribbons running approximately parallel to (101) through N1—H1⋯O2i hydrogen bonds (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.91 1.87 2.782 (2) 175
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing viewed along the a axis, with N—H⋯O hydrogen bonds shown as dotted lines.

Synthesis and crystallization

The title compound was obtained from a three components reaction between 2 mmol (234 mg) of thia­zolidin-2,4-dione, 1 mmol (147.6 mg) of 4-chloro­benzaldehyde and 1 mmol (61 mg) of 2-amino­ethanol in 30 ml ethanol. The reaction mixture was refluxed and monitored by TLC until completion. The resulting solid product was collected by filtration, dried under vacuum and recrystallized from ethanol to afford suitable quality crystals for X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H6ClNO2S
Mr 239.67
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 3.9098 (1), 40.7555 (15), 6.0917 (2)
β (°) 93.748 (1)
V3) 968.61 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.33
Crystal size (mm) 0.36 × 0.13 × 0.10
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.46, 0.63
No. of measured, independent and observed [I > 2σ(I)] reflections 12027, 1885, 1815
Rint 0.034
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.14
No. of reflections 1885
No. of parameters 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(5Z)-5-(4-Chlorobenzylidene)-1,3-thiazolidine-2,4-dione top
Crystal data top
C10H6ClNO2SF(000) = 488
Mr = 239.67Dx = 1.643 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 3.9098 (1) ÅCell parameters from 9969 reflections
b = 40.7555 (15) Åθ = 3.3–72.2°
c = 6.0917 (2) ŵ = 5.33 mm1
β = 93.748 (1)°T = 150 K
V = 968.61 (5) Å3Column, colourless
Z = 40.36 × 0.13 × 0.10 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
1885 independent reflections
Radiation source: INCOATEC IµS micro–focus source1815 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 2.2°
ω scansh = 44
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 5050
Tmin = 0.46, Tmax = 0.63l = 77
12027 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.7319P]
where P = (Fo2 + 2Fc2)/3
1885 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while that attached to nitrogen was placed in a location derived from a difference map and its coordinates adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.10718 (14)0.47151 (2)0.79460 (8)0.03023 (16)
S10.42007 (12)0.31099 (2)0.30938 (7)0.02236 (15)
O10.8931 (4)0.33869 (3)0.1933 (2)0.0282 (3)
O20.4488 (4)0.25053 (3)0.1464 (2)0.0336 (4)
N10.6783 (4)0.29170 (4)0.0508 (3)0.0234 (4)
H10.75460.27780.15360.028*
C10.4756 (5)0.39611 (4)0.3194 (3)0.0199 (4)
C20.5011 (5)0.42973 (5)0.2761 (3)0.0226 (4)
H20.59890.43670.14530.027*
C30.3868 (5)0.45301 (5)0.4197 (3)0.0240 (4)
H30.40290.47580.38770.029*
C40.2489 (5)0.44247 (5)0.6107 (3)0.0227 (4)
C50.2193 (5)0.40946 (5)0.6594 (3)0.0231 (4)
H50.12360.40270.79160.028*
C60.3308 (5)0.38626 (5)0.5133 (3)0.0219 (4)
H60.30880.36360.54500.026*
C70.6023 (5)0.37354 (5)0.1576 (3)0.0210 (4)
H70.71140.38410.04200.025*
C80.5946 (5)0.34092 (4)0.1405 (3)0.0197 (4)
C90.7404 (5)0.32495 (5)0.0532 (3)0.0215 (4)
C100.5164 (5)0.27923 (5)0.1228 (3)0.0245 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0389 (3)0.0259 (3)0.0262 (3)0.00532 (19)0.0051 (2)0.00617 (17)
S10.0309 (3)0.0182 (2)0.0187 (3)0.00121 (17)0.00752 (18)0.00075 (15)
O10.0395 (8)0.0235 (7)0.0229 (7)0.0036 (6)0.0129 (6)0.0011 (5)
O20.0540 (10)0.0182 (7)0.0300 (8)0.0052 (6)0.0147 (7)0.0008 (6)
N10.0336 (9)0.0177 (8)0.0198 (8)0.0011 (6)0.0080 (7)0.0013 (6)
C10.0221 (9)0.0187 (9)0.0187 (9)0.0003 (7)0.0004 (7)0.0006 (7)
C20.0277 (9)0.0212 (9)0.0192 (9)0.0019 (7)0.0031 (7)0.0024 (7)
C30.0317 (10)0.0162 (9)0.0239 (10)0.0008 (7)0.0003 (8)0.0008 (7)
C40.0236 (9)0.0231 (9)0.0211 (9)0.0028 (7)0.0001 (7)0.0035 (7)
C50.0254 (9)0.0253 (9)0.0191 (9)0.0005 (7)0.0043 (7)0.0014 (7)
C60.0262 (9)0.0187 (9)0.0209 (9)0.0006 (7)0.0020 (7)0.0021 (7)
C70.0231 (9)0.0223 (9)0.0178 (9)0.0009 (7)0.0030 (7)0.0031 (7)
C80.0217 (9)0.0217 (9)0.0159 (9)0.0002 (7)0.0027 (7)0.0011 (7)
C90.0248 (9)0.0210 (9)0.0188 (9)0.0006 (7)0.0024 (7)0.0003 (7)
C100.0309 (10)0.0225 (10)0.0203 (9)0.0011 (8)0.0039 (8)0.0010 (7)
Geometric parameters (Å, º) top
Cl1—C41.7447 (19)C2—C31.384 (3)
S1—C81.7619 (18)C2—H20.9500
S1—C101.779 (2)C3—C41.383 (3)
O1—C91.211 (2)C3—H30.9500
O2—C101.210 (2)C4—C51.384 (3)
N1—C101.365 (2)C5—C61.388 (3)
N1—C91.377 (2)C5—H50.9500
N1—H10.9099C6—H60.9500
C1—C21.400 (3)C7—C81.334 (3)
C1—C61.402 (3)C7—H70.9500
C1—C71.458 (3)C8—C91.493 (2)
C8—S1—C1091.39 (9)C4—C5—H5120.3
C10—N1—C9117.76 (16)C6—C5—H5120.3
C10—N1—H1119.4C5—C6—C1120.44 (17)
C9—N1—H1122.7C5—C6—H6119.8
C2—C1—C6118.44 (17)C1—C6—H6119.8
C2—C1—C7117.29 (17)C8—C7—C1132.41 (17)
C6—C1—C7124.27 (17)C8—C7—H7113.8
C3—C2—C1121.47 (18)C1—C7—H7113.8
C3—C2—H2119.3C7—C8—C9119.25 (16)
C1—C2—H2119.3C7—C8—S1130.70 (15)
C4—C3—C2118.59 (17)C9—C8—S1110.01 (13)
C4—C3—H3120.7O1—C9—N1123.94 (17)
C2—C3—H3120.7O1—C9—C8125.93 (17)
C3—C4—C5121.69 (17)N1—C9—C8110.12 (15)
C3—C4—Cl1119.15 (15)O2—C10—N1124.62 (18)
C5—C4—Cl1119.16 (15)O2—C10—S1124.78 (15)
C4—C5—C6119.36 (18)N1—C10—S1110.60 (14)
C6—C1—C2—C30.0 (3)C1—C7—C8—S10.7 (3)
C7—C1—C2—C3179.82 (18)C10—S1—C8—C7174.7 (2)
C1—C2—C3—C40.8 (3)C10—S1—C8—C92.85 (15)
C2—C3—C4—C50.8 (3)C10—N1—C9—O1177.09 (19)
C2—C3—C4—Cl1179.45 (15)C10—N1—C9—C82.6 (2)
C3—C4—C5—C60.0 (3)C7—C8—C9—O16.0 (3)
Cl1—C4—C5—C6179.82 (15)S1—C8—C9—O1176.14 (17)
C4—C5—C6—C10.7 (3)C7—C8—C9—N1174.27 (17)
C2—C1—C6—C50.7 (3)S1—C8—C9—N13.6 (2)
C7—C1—C6—C5179.44 (18)C9—N1—C10—O2179.3 (2)
C2—C1—C7—C8174.5 (2)C9—N1—C10—S10.5 (2)
C6—C1—C7—C85.3 (3)C8—S1—C10—O2178.7 (2)
C1—C7—C8—C9178.05 (19)C8—S1—C10—N11.49 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.911.872.782 (2)175
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The support of NSF–MRI Grant No.1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBarros, C. D., Amato, A. A., Oliveira, T. B., Iannini, K. B. R., Silva, A. L., Silva, T. G., Leite, E. S., Hernandes, M. Z., Lima, M. C. A., Galdino, S. L., Neves, F. A. R. & Pitta, I. R. (2008). Bioorg. Med. Chem. 18, 3805–3811.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOya, B., Ozen, O., Arzu, M., Engin, K. & Rahmiye, E. (2007). Bioorg. Med. Chem. 15, 6012–6017.  PubMed Google Scholar
First citationPattan, S. R., Alagwadi, K. R., Bhat, A. R., Reddy, V. V. K., Pattan, J. S., Khade, A. B. & &Bhatt, K. G. (2008). Indian Drugs, 45, 532–535.  Google Scholar
First citationShankar, G. A. & Kallanagouda, R. A. (2012). Med. Chem. Res. 21, 816–824.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds