organic compounds
(5Z)-5-(4-Chlorobenzylidene)-1,3-thiazolidine-2,4-dione
aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C10H6ClNO2S, the dihedral angle between the planes of the 4-chlorophenyl and thiazolidine rings is 8.62 (9)°. In the crystal, molecules form undulating ribbons running approximately parallel to (101) through N—H⋯O hydrogen bonds.
Keywords: crystal structure; 4-chlorophenyl ring; thiazolidine ring.
CCDC reference: 1486205
Structure description
Thiazolidinedione scaffold compounds (TDZs), known as glitazones, are a class of medications used in the treatment of diabetes mellitus type 2. TZDs are an important heterocyclic ring system and have therapeutic importance when combined with other heterocyclic rings, as they can produce a wide range of biological activities, such as anti-inflammatory (Barros et al., 2008), antitubercular (Pattan et al., 2008), antimicrobial (Oya et al., 2007) and cytotoxic (Shankar & Kallanagouda, 2012). In this context, we report here the synthesis and of the title compound (Fig. 1).
The dihedral angle between the 4-chlorophenyl and thiazolidine rings is 8.62 (9)°. The molecules form undulating ribbons running approximately parallel to (101) through N1—H1⋯O2i hydrogen bonds (Table 1 and Fig. 2).
Synthesis and crystallization
The title compound was obtained from a three components reaction between 2 mmol (234 mg) of thiazolidin-2,4-dione, 1 mmol (147.6 mg) of 4-chlorobenzaldehyde and 1 mmol (61 mg) of 2-aminoethanol in 30 ml ethanol. The reaction mixture was refluxed and monitored by TLC until completion. The resulting solid product was collected by filtration, dried under vacuum and recrystallized from ethanol to afford suitable quality crystals for X-ray diffraction.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1486205
10.1107/S2414314616009883/xu4009sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616009883/xu4009Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616009883/xu4009Isup3.cml
Data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H6ClNO2S | F(000) = 488 |
Mr = 239.67 | Dx = 1.643 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 3.9098 (1) Å | Cell parameters from 9969 reflections |
b = 40.7555 (15) Å | θ = 3.3–72.2° |
c = 6.0917 (2) Å | µ = 5.33 mm−1 |
β = 93.748 (1)° | T = 150 K |
V = 968.61 (5) Å3 | Column, colourless |
Z = 4 | 0.36 × 0.13 × 0.10 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 1885 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 1815 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.034 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.2°, θmin = 2.2° |
ω scans | h = −4→4 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −50→50 |
Tmin = 0.46, Tmax = 0.63 | l = −7→7 |
12027 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0399P)2 + 0.7319P] where P = (Fo2 + 2Fc2)/3 |
1885 reflections | (Δ/σ)max = 0.001 |
136 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while that attached to nitrogen was placed in a location derived from a difference map and its coordinates adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.10718 (14) | 0.47151 (2) | 0.79460 (8) | 0.03023 (16) | |
S1 | 0.42007 (12) | 0.31099 (2) | 0.30938 (7) | 0.02236 (15) | |
O1 | 0.8931 (4) | 0.33869 (3) | −0.1933 (2) | 0.0282 (3) | |
O2 | 0.4488 (4) | 0.25053 (3) | 0.1464 (2) | 0.0336 (4) | |
N1 | 0.6783 (4) | 0.29170 (4) | −0.0508 (3) | 0.0234 (4) | |
H1 | 0.7546 | 0.2778 | −0.1536 | 0.028* | |
C1 | 0.4756 (5) | 0.39611 (4) | 0.3194 (3) | 0.0199 (4) | |
C2 | 0.5011 (5) | 0.42973 (5) | 0.2761 (3) | 0.0226 (4) | |
H2 | 0.5989 | 0.4367 | 0.1453 | 0.027* | |
C3 | 0.3868 (5) | 0.45301 (5) | 0.4197 (3) | 0.0240 (4) | |
H3 | 0.4029 | 0.4758 | 0.3877 | 0.029* | |
C4 | 0.2489 (5) | 0.44247 (5) | 0.6107 (3) | 0.0227 (4) | |
C5 | 0.2193 (5) | 0.40946 (5) | 0.6594 (3) | 0.0231 (4) | |
H5 | 0.1236 | 0.4027 | 0.7916 | 0.028* | |
C6 | 0.3308 (5) | 0.38626 (5) | 0.5133 (3) | 0.0219 (4) | |
H6 | 0.3088 | 0.3636 | 0.5450 | 0.026* | |
C7 | 0.6023 (5) | 0.37354 (5) | 0.1576 (3) | 0.0210 (4) | |
H7 | 0.7114 | 0.3841 | 0.0420 | 0.025* | |
C8 | 0.5946 (5) | 0.34092 (4) | 0.1405 (3) | 0.0197 (4) | |
C9 | 0.7404 (5) | 0.32495 (5) | −0.0532 (3) | 0.0215 (4) | |
C10 | 0.5164 (5) | 0.27923 (5) | 0.1228 (3) | 0.0245 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0389 (3) | 0.0259 (3) | 0.0262 (3) | 0.00532 (19) | 0.0051 (2) | −0.00617 (17) |
S1 | 0.0309 (3) | 0.0182 (2) | 0.0187 (3) | −0.00121 (17) | 0.00752 (18) | 0.00075 (15) |
O1 | 0.0395 (8) | 0.0235 (7) | 0.0229 (7) | −0.0036 (6) | 0.0129 (6) | 0.0011 (5) |
O2 | 0.0540 (10) | 0.0182 (7) | 0.0300 (8) | −0.0052 (6) | 0.0147 (7) | 0.0008 (6) |
N1 | 0.0336 (9) | 0.0177 (8) | 0.0198 (8) | −0.0011 (6) | 0.0080 (7) | −0.0013 (6) |
C1 | 0.0221 (9) | 0.0187 (9) | 0.0187 (9) | 0.0003 (7) | −0.0004 (7) | 0.0006 (7) |
C2 | 0.0277 (9) | 0.0212 (9) | 0.0192 (9) | −0.0019 (7) | 0.0031 (7) | 0.0024 (7) |
C3 | 0.0317 (10) | 0.0162 (9) | 0.0239 (10) | −0.0008 (7) | 0.0003 (8) | 0.0008 (7) |
C4 | 0.0236 (9) | 0.0231 (9) | 0.0211 (9) | 0.0028 (7) | 0.0001 (7) | −0.0035 (7) |
C5 | 0.0254 (9) | 0.0253 (9) | 0.0191 (9) | −0.0005 (7) | 0.0043 (7) | 0.0014 (7) |
C6 | 0.0262 (9) | 0.0187 (9) | 0.0209 (9) | −0.0006 (7) | 0.0020 (7) | 0.0021 (7) |
C7 | 0.0231 (9) | 0.0223 (9) | 0.0178 (9) | −0.0009 (7) | 0.0030 (7) | 0.0031 (7) |
C8 | 0.0217 (9) | 0.0217 (9) | 0.0159 (9) | −0.0002 (7) | 0.0027 (7) | 0.0011 (7) |
C9 | 0.0248 (9) | 0.0210 (9) | 0.0188 (9) | 0.0006 (7) | 0.0024 (7) | −0.0003 (7) |
C10 | 0.0309 (10) | 0.0225 (10) | 0.0203 (9) | −0.0011 (8) | 0.0039 (8) | 0.0010 (7) |
Cl1—C4 | 1.7447 (19) | C2—C3 | 1.384 (3) |
S1—C8 | 1.7619 (18) | C2—H2 | 0.9500 |
S1—C10 | 1.779 (2) | C3—C4 | 1.383 (3) |
O1—C9 | 1.211 (2) | C3—H3 | 0.9500 |
O2—C10 | 1.210 (2) | C4—C5 | 1.384 (3) |
N1—C10 | 1.365 (2) | C5—C6 | 1.388 (3) |
N1—C9 | 1.377 (2) | C5—H5 | 0.9500 |
N1—H1 | 0.9099 | C6—H6 | 0.9500 |
C1—C2 | 1.400 (3) | C7—C8 | 1.334 (3) |
C1—C6 | 1.402 (3) | C7—H7 | 0.9500 |
C1—C7 | 1.458 (3) | C8—C9 | 1.493 (2) |
C8—S1—C10 | 91.39 (9) | C4—C5—H5 | 120.3 |
C10—N1—C9 | 117.76 (16) | C6—C5—H5 | 120.3 |
C10—N1—H1 | 119.4 | C5—C6—C1 | 120.44 (17) |
C9—N1—H1 | 122.7 | C5—C6—H6 | 119.8 |
C2—C1—C6 | 118.44 (17) | C1—C6—H6 | 119.8 |
C2—C1—C7 | 117.29 (17) | C8—C7—C1 | 132.41 (17) |
C6—C1—C7 | 124.27 (17) | C8—C7—H7 | 113.8 |
C3—C2—C1 | 121.47 (18) | C1—C7—H7 | 113.8 |
C3—C2—H2 | 119.3 | C7—C8—C9 | 119.25 (16) |
C1—C2—H2 | 119.3 | C7—C8—S1 | 130.70 (15) |
C4—C3—C2 | 118.59 (17) | C9—C8—S1 | 110.01 (13) |
C4—C3—H3 | 120.7 | O1—C9—N1 | 123.94 (17) |
C2—C3—H3 | 120.7 | O1—C9—C8 | 125.93 (17) |
C3—C4—C5 | 121.69 (17) | N1—C9—C8 | 110.12 (15) |
C3—C4—Cl1 | 119.15 (15) | O2—C10—N1 | 124.62 (18) |
C5—C4—Cl1 | 119.16 (15) | O2—C10—S1 | 124.78 (15) |
C4—C5—C6 | 119.36 (18) | N1—C10—S1 | 110.60 (14) |
C6—C1—C2—C3 | 0.0 (3) | C1—C7—C8—S1 | 0.7 (3) |
C7—C1—C2—C3 | 179.82 (18) | C10—S1—C8—C7 | 174.7 (2) |
C1—C2—C3—C4 | 0.8 (3) | C10—S1—C8—C9 | −2.85 (15) |
C2—C3—C4—C5 | −0.8 (3) | C10—N1—C9—O1 | 177.09 (19) |
C2—C3—C4—Cl1 | 179.45 (15) | C10—N1—C9—C8 | −2.6 (2) |
C3—C4—C5—C6 | 0.0 (3) | C7—C8—C9—O1 | 6.0 (3) |
Cl1—C4—C5—C6 | 179.82 (15) | S1—C8—C9—O1 | −176.14 (17) |
C4—C5—C6—C1 | 0.7 (3) | C7—C8—C9—N1 | −174.27 (17) |
C2—C1—C6—C5 | −0.7 (3) | S1—C8—C9—N1 | 3.6 (2) |
C7—C1—C6—C5 | 179.44 (18) | C9—N1—C10—O2 | −179.3 (2) |
C2—C1—C7—C8 | −174.5 (2) | C9—N1—C10—S1 | 0.5 (2) |
C6—C1—C7—C8 | 5.3 (3) | C8—S1—C10—O2 | −178.7 (2) |
C1—C7—C8—C9 | 178.05 (19) | C8—S1—C10—N1 | 1.49 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.91 | 1.87 | 2.782 (2) | 175 |
Symmetry code: (i) x+1/2, −y+1/2, z−1/2. |
Acknowledgements
The support of NSF–MRI Grant No.1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Barros, C. D., Amato, A. A., Oliveira, T. B., Iannini, K. B. R., Silva, A. L., Silva, T. G., Leite, E. S., Hernandes, M. Z., Lima, M. C. A., Galdino, S. L., Neves, F. A. R. & Pitta, I. R. (2008). Bioorg. Med. Chem. 18, 3805–3811. CrossRef Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Oya, B., Ozen, O., Arzu, M., Engin, K. & Rahmiye, E. (2007). Bioorg. Med. Chem. 15, 6012–6017. PubMed Google Scholar
Pattan, S. R., Alagwadi, K. R., Bhat, A. R., Reddy, V. V. K., Pattan, J. S., Khade, A. B. & &Bhatt, K. G. (2008). Indian Drugs, 45, 532–535. Google Scholar
Shankar, G. A. & Kallanagouda, R. A. (2012). Med. Chem. Res. 21, 816–824. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.