metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[(2,2′-bi­pyridine-κ2N,N′)[μ4-2,2′-(1,3-phenyl­ene)bis­­(imidazol-1-yl)-κ4N:N′:N′′:N′′′]dicopper(I)]

aDepartment of Inoganic Chemistry and Physical Chemistry, College of Pharmacy, Guangxi Medical University, Nanning 530021, People's Republic of China
*Correspondence e-mail: xuehuali_100@163.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 June 2016; accepted 21 June 2016; online 24 June 2016)

Two CuI atoms are present in the asymmetric unit of the polymeric title complex, [Cu2(C20H12N4)(C10H8N2)]n. One of the cations is located on an inversion centre and is linearly coordinated by the N atoms of benzimidazolyl moieties of the 1,2-bis­(2-benzimidazolium)benzene ligand, whereas the second cation is located on a twofold rotation axis and is tetra­hedrally coordinated by two N atoms of a chelating 2,2′-bi­pyridine ligand and two other N atoms of the benzimidazolyl moieties. The bridging character of the 1,2-bis­(2-benzimidazol­yl)benzene leads to the formation of a three-dimensional framework structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Copper complexes have attracted significant attention because of their biological activities. Apart from a low toxicity, copper complexes can potentially inhibit cellular proteasomal activity, enhance apoptosis and DNA binding activities (Gopalakrishnan et al., 2014[Gopalakrishnan, M., Senthilkumar, K., Rao, P. R., Siva, R. & Palanisami, N. (2014). Inorg. Chem. Commun. 46, 54-59.]). Benzimidazole and its derivatives exhibit anti­cancer (Rodríguez-Solano et al., 2011[Rodríguez Solano, L. A., Aguiñiga, I., López Ortiz, M., Tiburcio, R., Luviano, A., Regla, I., Santiago-Osorio, E., Ugalde-Saldívar, V. M., Toscano, R. A. & Castillo, I. (2011). Eur. J. Inorg. Chem. pp. 3454-3460.]), anti­fungal (Coyle et al., 2004[Coyle, B., McCann, M., Kavanagh, K., Devereux, M., McKee, V., Kayal, N., Egan, D., Deegan, C. & Finn, G. J. (2004). J. Inorg. Biochem. 98, 1361-1366.]), anti-inflammatory (Sączewski et al., 2006[Sączewski, F., Dziemidowicz-Borys, E., Bednarski, P. J., Grünert, R., Gdaniec, M. & Tabin, P. (2006). J. Inorg. Biochem. 100, 1389-1398.]), anti-rheumatism (Rowan et al., 2009[Rowan, R., Moran, C., McCann, M. & Kavanagh, K. (2009). Bio. Metals. 22, 461-467.]) or insect-repellent activities (Rowan et al., 2009[Rowan, R., Moran, C., McCann, M. & Kavanagh, K. (2009). Bio. Metals. 22, 461-467.]), and are widely used in metal-organic chemistry. In the current project we have combined copper and a benzimidazole derivative together with 2,2′-bi­pyridine as a co-ligand to yield the title complex, [Cu2(C20H12N4)(C10H8N2)]n.

As shown in Fig. 1[link], the asymmetric unit contains two CuI ions. The Cu1 site is linearly coordinated by the N1 atoms from symmetry-related benzimidazolium moieties at a distance of 1.887 (2) Å. The Cu2 site shows a tetra­hedral coordination by the other two N atoms of the benzimidazolyl moieties and the N atoms of the 2,2′-bi­pyridine ligand. The small bite angle of the latter [N—Cu—N 79.01 (13)°] causes a considerable distortion of the coordination sphere [angular range 79.01 (13) − 117.21 (8)°]. The dihedral angle between two benzimidazolyl rings is 37.00 (9)°, in good agreement with those of other Cu complexes containing benzimidazolyl ligands (Lin et al., 2015[Lin, J. J., Meng, F. Y. & Li, X. H. (2015). Chin. J. Struc. Chem, 1, 41-48.]). The dihedral angle of 15.07 (15)° between the two pyridinyl rings in the 2,2′-bi­pyridine ligand indicates considerable twisting. The bridging character of the organic anion leads to the formation of a three-dimensional polymeric structure (Fig. 2[link]).

[Figure 1]
Figure 1
The coordination environments around the two different CuI atoms. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) −x + [{5\over 4}], −y + [{5\over 4}], z; (iii) −x + 7/4, y, −z + [{3\over 4}].]
[Figure 2]
Figure 2
Part of the crystal packing in the title structure.

Synthesis and crystallization

1,2-Bis(2-benzimidazol­yl)benzene was synthesized according to a reported procedure (Deng et al., 2012[Deng, Y. Y., Wu, H. Z., Jin, Y. L. & Liu, F. (2012). J. Chem. Crystallogr. 42, 739-745.]). 1,2-bis­(2-benzimidazol­yl)benzene (0.1 mmol, 0.0312 g), 2,2′-bi­pyridine (0.1 mmol, 0.0156 g) and CuCl2 (0.1 mmol, 0.0170 g) were added to 15 ml aqueous NH3 and stirred for 30 s. Then the solution was placed in a 23 ml Teflon-lined stainless-steel vessel and heated at 466 K for 3 d, then cooled to room temperature at 5 K h−1. Dark-red block-like crystals were obtained directly from the reaction mixture. IR (KBr, cm−1): 3444.6 (s), 1605.7 (m), 1439.3 (m), 1372.6 (s), 1283.0 (s), 860.5 (w), 747.0 (w), 699.0 (w).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Cu2(C20H12N4)(C10H8N2)]
Mr 591.60
Crystal system, space group Orthorhombic, Fddd
Temperature (K) 298
a, b, c (Å) 10.857 (3), 26.523 (8), 33.064 (10)
V3) 9521 (5)
Z 16
Radiation type Mo Kα
μ (mm−1) 1.82
Crystal size (mm) 0.3 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.752, 0.940
No. of measured, independent and observed [I > 2σ(I)] reflections 17682, 2438, 1969
Rint 0.042
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.09
No. of reflections 2438
No. of parameters 175
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[(2,2'-bipyridine-κ2N,N')[µ4-2,2'-(1,3-phenylene)bis(imidazol-1-yl)-κ4N:N':N'':N''']dicopper(I)] top
Crystal data top
[Cu2(C20H12N4)(C10H8N2)]Dx = 1.651 Mg m3
Mr = 591.60Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, FdddCell parameters from 4559 reflections
a = 10.857 (3) Åθ = 3.0–26.7°
b = 26.523 (8) ŵ = 1.82 mm1
c = 33.064 (10) ÅT = 298 K
V = 9521 (5) Å3Block, dark red
Z = 160.3 × 0.2 × 0.1 mm
F(000) = 4800
Data collection top
Bruker APEXII CCD
diffractometer
1969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
phi and ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1313
Tmin = 0.752, Tmax = 0.940k = 3332
17682 measured reflectionsl = 4041
2438 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0421P)2 + 18.4382P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2438 reflectionsΔρmax = 0.43 e Å3
175 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.50000.50000.02680 (14)
Cu20.62500.62500.41384 (2)0.02941 (14)
N10.89614 (18)0.55364 (8)0.48437 (6)0.0240 (4)
N20.77124 (18)0.60678 (8)0.44890 (6)0.0238 (5)
N30.5862 (2)0.57785 (8)0.36543 (6)0.0313 (5)
C80.8571 (2)0.53486 (9)0.41133 (7)0.0207 (5)
C90.87500.56041 (12)0.37500.0202 (7)
H90.87500.59550.37500.024*
C10.8628 (2)0.59333 (10)0.50958 (7)0.0255 (5)
C70.8393 (2)0.56451 (9)0.44871 (7)0.0203 (5)
C100.8574 (2)0.48240 (9)0.41092 (7)0.0287 (6)
H100.84560.46460.43490.034*
C60.7865 (2)0.62607 (10)0.48737 (7)0.0250 (5)
C110.87500.45660 (14)0.37500.0348 (9)
H110.87500.42150.37500.042*
C20.8954 (3)0.60438 (11)0.54960 (8)0.0364 (7)
H20.94540.58280.56450.044*
C50.7417 (3)0.67038 (11)0.50444 (8)0.0366 (7)
H50.69100.69200.48990.044*
C160.5963 (2)0.59969 (11)0.32881 (8)0.0319 (6)
C30.8506 (3)0.64837 (13)0.56591 (9)0.0454 (8)
H30.87090.65670.59240.054*
C40.7754 (3)0.68100 (12)0.54375 (10)0.0470 (8)
H40.74740.71050.55580.056*
C150.5544 (3)0.57578 (15)0.29392 (10)0.0520 (9)
H150.56020.59170.26890.062*
C120.5399 (3)0.53138 (12)0.36714 (11)0.0497 (8)
H120.53480.51570.39230.060*
C130.4992 (3)0.50542 (15)0.33384 (15)0.0662 (12)
H130.46870.47280.33640.079*
C140.5042 (3)0.52832 (17)0.29698 (14)0.0680 (13)
H140.47410.51200.27410.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0312 (2)0.0276 (2)0.0215 (2)0.00712 (19)0.00507 (18)0.00262 (18)
Cu20.0312 (3)0.0374 (3)0.0196 (2)0.0108 (2)0.0000.000
N10.0285 (11)0.0256 (11)0.0179 (10)0.0025 (9)0.0015 (8)0.0018 (9)
N20.0250 (10)0.0262 (11)0.0203 (10)0.0049 (9)0.0026 (8)0.0021 (8)
N30.0301 (12)0.0331 (13)0.0308 (13)0.0032 (10)0.0018 (9)0.0034 (10)
C80.0187 (11)0.0241 (12)0.0193 (12)0.0022 (9)0.0008 (9)0.0001 (10)
C90.0180 (15)0.0186 (17)0.0239 (17)0.0000.0011 (13)0.000
C10.0264 (13)0.0288 (14)0.0213 (12)0.0005 (11)0.0016 (10)0.0006 (10)
C70.0190 (11)0.0227 (12)0.0192 (12)0.0012 (9)0.0004 (9)0.0016 (10)
C100.0386 (15)0.0254 (13)0.0221 (13)0.0029 (11)0.0034 (11)0.0059 (11)
C60.0251 (12)0.0283 (13)0.0217 (12)0.0014 (10)0.0000 (10)0.0024 (11)
C110.054 (2)0.0175 (18)0.033 (2)0.0000.0078 (19)0.000
C20.0425 (16)0.0435 (17)0.0232 (14)0.0038 (13)0.0090 (12)0.0015 (12)
C50.0401 (16)0.0344 (16)0.0354 (16)0.0091 (13)0.0052 (12)0.0094 (13)
C160.0248 (13)0.0427 (16)0.0283 (14)0.0151 (11)0.0018 (10)0.0096 (12)
C30.0531 (19)0.055 (2)0.0283 (15)0.0016 (16)0.0095 (14)0.0177 (14)
C40.0559 (19)0.0441 (19)0.0410 (18)0.0075 (15)0.0032 (15)0.0238 (15)
C150.0415 (17)0.080 (3)0.0345 (17)0.0216 (18)0.0073 (14)0.0187 (18)
C120.0423 (17)0.0397 (18)0.067 (2)0.0047 (14)0.0005 (16)0.0031 (17)
C130.045 (2)0.049 (2)0.105 (4)0.0020 (17)0.008 (2)0.035 (2)
C140.0407 (19)0.081 (3)0.082 (3)0.015 (2)0.0173 (19)0.056 (3)
Geometric parameters (Å, º) top
Cu1—N11.887 (2)C10—C111.384 (3)
Cu1—N1i1.887 (2)C6—C51.391 (4)
Cu2—N2ii2.024 (2)C11—C10iii1.384 (3)
Cu2—N22.024 (2)C11—H110.9300
Cu2—N3ii2.075 (2)C2—H20.9300
Cu2—N32.075 (2)C2—C31.374 (4)
N1—C11.391 (3)C5—H50.9300
N1—C71.362 (3)C5—C41.379 (4)
N2—C71.343 (3)C16—C16ii1.480 (6)
N2—C61.381 (3)C16—C151.393 (4)
N3—C161.347 (3)C3—H30.9300
N3—C121.332 (4)C3—C41.397 (4)
C8—C91.393 (3)C4—H40.9300
C8—C71.477 (3)C15—H150.9300
C8—C101.391 (3)C15—C141.375 (5)
C9—C8iii1.393 (3)C12—H120.9300
C9—H90.9300C12—C131.372 (5)
C1—C61.407 (3)C13—H130.9300
C1—C21.401 (4)C13—C141.363 (6)
C10—H100.9300C14—H140.9300
N1—Cu1—N1i180.00 (8)N2—C6—C5130.1 (2)
N2ii—Cu2—N2110.13 (11)C5—C6—C1121.0 (2)
N2ii—Cu2—N3ii117.21 (8)C10iii—C11—C10120.7 (3)
N2—Cu2—N3117.21 (8)C10—C11—H11119.6
N2ii—Cu2—N3115.24 (9)C10iii—C11—H11119.6
N2—Cu2—N3ii115.25 (9)C1—C2—H2121.3
N3ii—Cu2—N379.01 (13)C3—C2—C1117.3 (3)
C1—N1—Cu1124.19 (16)C3—C2—H2121.3
C7—N1—Cu1131.87 (17)C6—C5—H5121.2
C7—N1—C1103.9 (2)C4—C5—C6117.5 (3)
C7—N2—Cu2128.91 (16)C4—C5—H5121.2
C7—N2—C6104.3 (2)N3—C16—C16ii115.12 (16)
C6—N2—Cu2122.24 (16)N3—C16—C15121.5 (3)
C16—N3—Cu2114.70 (18)C15—C16—C16ii123.4 (2)
C12—N3—Cu2127.0 (2)C2—C3—H3119.1
C12—N3—C16117.8 (3)C2—C3—C4121.8 (3)
C9—C8—C7118.7 (2)C4—C3—H3119.1
C10—C8—C9118.5 (2)C5—C4—C3121.5 (3)
C10—C8—C7122.7 (2)C5—C4—H4119.3
C8—C9—C8iii121.8 (3)C3—C4—H4119.3
C8iii—C9—H9119.1C16—C15—H15120.5
C8—C9—H9119.1C14—C15—C16119.0 (3)
N1—C1—C6107.9 (2)C14—C15—H15120.5
N1—C1—C2131.2 (2)N3—C12—H12118.3
C2—C1—C6120.8 (2)N3—C12—C13123.5 (4)
N1—C7—C8123.5 (2)C13—C12—H12118.3
N2—C7—N1115.0 (2)C12—C13—H13120.6
N2—C7—C8121.4 (2)C14—C13—C12118.8 (4)
C8—C10—H10119.9C14—C13—H13120.6
C11—C10—C8120.2 (2)C15—C14—H14120.3
C11—C10—H10119.9C13—C14—C15119.3 (3)
N2—C6—C1108.9 (2)C13—C14—H14120.3
Cu1—N1—C1—C6179.22 (16)C1—C2—C3—C40.1 (5)
Cu1—N1—C1—C21.3 (4)C7—N1—C1—C60.2 (3)
Cu1—N1—C7—N2179.99 (16)C7—N1—C1—C2177.7 (3)
Cu1—N1—C7—C84.5 (4)C7—N2—C6—C11.3 (3)
Cu2—N2—C7—N1154.51 (17)C7—N2—C6—C5177.2 (3)
Cu2—N2—C7—C829.9 (3)C7—C8—C9—C8iii179.7 (2)
Cu2—N2—C6—C1156.77 (17)C7—C8—C10—C11179.75 (19)
Cu2—N2—C6—C524.8 (4)C10—C8—C9—C8iii0.01 (16)
Cu2—N3—C16—C16ii10.2 (3)C10—C8—C7—N144.2 (3)
Cu2—N3—C16—C15169.4 (2)C10—C8—C7—N2140.5 (2)
Cu2—N3—C12—C13169.7 (2)C6—N2—C7—N11.5 (3)
N1—C1—C6—N20.7 (3)C6—N2—C7—C8174.1 (2)
N1—C1—C6—C5177.9 (2)C6—C1—C2—C30.4 (4)
N1—C1—C2—C3177.3 (3)C6—C5—C4—C30.7 (5)
N2—C6—C5—C4177.9 (3)C2—C1—C6—N2178.8 (2)
N3—C16—C15—C141.5 (4)C2—C1—C6—C50.2 (4)
N3—C12—C13—C141.1 (5)C2—C3—C4—C50.5 (5)
C8—C10—C11—C10iii0.01 (17)C16—N3—C12—C131.8 (4)
C9—C8—C7—N1135.5 (2)C16ii—C16—C15—C14178.9 (3)
C9—C8—C7—N239.7 (3)C16—C15—C14—C131.4 (5)
C9—C8—C10—C110.0 (3)C12—N3—C16—C16ii177.3 (3)
C1—N1—C7—N21.1 (3)C12—N3—C16—C153.1 (4)
C1—N1—C7—C8174.4 (2)C12—C13—C14—C152.7 (5)
C1—C6—C5—C40.3 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+5/4, y+5/4, z; (iii) x+7/4, y, z+3/4.
 

Acknowledgements

The authors are grateful for the financial support from (i) the Youth Science Foundation of Guangxi Natural Science (No. 2014GXNSFBA118053), (ii) the Education Department of Guangxi (No. KY2015ZL020), (iii) the Natural Science Foundation of Guangxi (No. 2010GXNSF013159), (iv) the Program of Guangxi Provincial Department of Science and Technology (No. 12118005-1-2) and (v) the Innovation Project of Guangxi Postgraduate (No. YCSZ2015118) to this research.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoyle, B., McCann, M., Kavanagh, K., Devereux, M., McKee, V., Kayal, N., Egan, D., Deegan, C. & Finn, G. J. (2004). J. Inorg. Biochem. 98, 1361–1366.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDeng, Y. Y., Wu, H. Z., Jin, Y. L. & Liu, F. (2012). J. Chem. Crystallogr. 42, 739–745.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGopalakrishnan, M., Senthilkumar, K., Rao, P. R., Siva, R. & Palanisami, N. (2014). Inorg. Chem. Commun. 46, 54–59.  CSD CrossRef CAS Google Scholar
First citationLin, J. J., Meng, F. Y. & Li, X. H. (2015). Chin. J. Struc. Chem, 1, 41–48.  Google Scholar
First citationRodríguez Solano, L. A., Aguiñiga, I., López Ortiz, M., Tiburcio, R., Luviano, A., Regla, I., Santiago-Osorio, E., Ugalde-Saldívar, V. M., Toscano, R. A. & Castillo, I. (2011). Eur. J. Inorg. Chem. pp. 3454–3460.  Google Scholar
First citationRowan, R., Moran, C., McCann, M. & Kavanagh, K. (2009). Bio. Metals. 22, 461–467.  CAS Google Scholar
First citationSączewski, F., Dziemidowicz-Borys, E., Bednarski, P. J., Grünert, R., Gdaniec, M. & Tabin, P. (2006). J. Inorg. Biochem. 100, 1389–1398.  PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds