metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

A second monoclinic polymorph of caesium salicylate monohydrate

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 June 2016; accepted 16 June 2016; online 24 June 2016)

The structure of the title caesium salt with salicylic acid, poly[μ2-aqua-μ4-(salicylato-κ4O1:O1:O1′:O2)caesium], [Cs(C7H5O3)(H2O)]n, represents a second monoclinic polymorph of this compound. The two-dimensional coordination polymeric structure is based on a centrosymmetric dinuclear bridged repeat unit with each irregular CsO6 coordination polyhedron comprising a μ2-bridging water mol­ecule and μ4-bridging O-atom donors, three from the carboxyl group and one from the phenolic group of the salicylate ligand. The Cs—O bond range is 3.023 (3)–3.368 (4) Å and the Cs⋯Cs separation within the dinuclear unit is 4.9265 (6) Å. The polymeric sheet structure lies parallel to (010) with the water mol­ecule and the phenol group involved in intra-polymer O—H⋯Ocarbox­yl hydrogen-bonding inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the title complex salt, [Cs(C7H5O3)(H2O)]n (polymorph 2) (Fig. 1[link]), although polymorphic with the Wiesbrock & Schmidbaur (2003a[Wiesbrock, F. & Schmidbaur, H. (2003a). Inorg. Chem. 42, 7283-7289.]) crystal and forming a two-dimensional coordination polymeric structure, apart from the very obvious cell-parameter differences, particularly the disparate values of the unique b axis, the mol­ecular structures are distinctly different. Polymorph 2 is based on a centrosymmetric dinuclear bridged repeat unit with each irregular CsO6 coordination polyhedron comprising a μ2-bridging water mol­ecule (O1W), and μ4-bridging O-atom donors, three from the carboxyl group and one from the phenolic group of the salicylate ligand. The Cs—O bond-length range is 3.023 (3)–3.368 (4) Å (Table 1[link]) and the Cs⋯Csiii separation within the dinuclear unit is 4.9265 (6) Å. With polymorph 1, the Cs—O range in the CsO7 coordination sphere is given as 3.071 (3)–3.584 (2) Å (although stated incorrectly as eight-coordinate), this would be reduced to CsO6 with the last value in the stated range being considered too long for a Cs—O bond (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 144-152.]), with the sixth value being 3.341 (2) Å. The shortest Cs⋯Cs separation in polymorph 1 is also very different [4.1391 (3) Å].

Table 1
Selected bond lengths (Å)

Cs1—O12i 3.023 (3) Cs1—O11ii 3.159 (4)
Cs1—O1W 3.108 (3) Cs1—O12iii 3.244 (3)
Cs1—O2 3.130 (4) Cs1—O1Wiii 3.368 (4)
Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z+1; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular configuration and atom-numbering scheme for the centrosymmetric repeat unit in the title complex, with non-H atoms shown as 40% probability displacement ellipsoids. For symmetry codes, see Table 1[link]. Hydrogen bonds are shown as dashed lines.

The polymeric sheet structure in the title complex lies parallel to (010) (Figs. 2[link] and 3[link]) and in the crystal, intra-layer hydrogen-bonding inter­actions (Table 2[link]) involving H-atom donors of the coordinating water mol­ecule and carboxyl O-atom acceptors are present (Fig. 3[link]). Also present are short Cs1⋯C inter­actions to four of the salicylate ring C atoms [C1v 3.838 (4) Å; C4v 3.825 (5) Å; C5v 3.648 (5) Å; C6v 3.658 (5) Å; for symmetry code (v), see Table 2[link]].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O12 0.78 (6) 1.82 (6) 2.516 (5) 148 (8)
O1W—H11W⋯O11iv 0.89 (4) 2.00 (5) 2.867 (5) 165 (6)
O1W—H11W⋯O12iv 0.89 (4) 2.57 (5) 3.268 (5) 136 (5)
O1W—H12W⋯O11v 0.89 (4) 2.04 (5) 2.848 (5) 151 (6)
Symmetry codes: (iv) -x+1, -y+1, -z; (v) x-1, y, z.
[Figure 2]
Figure 2
A partial extension of the polymeric structure of the title compound. [Symmetry code: (vi) −x + 2, −y + 1, −z; for other codes, see Tables 1[link] and 2[link].]
[Figure 3]
Figure 3
The hydrogen-bonded sheet structure viewed along the a axis. Non-associative H atoms are omitted and intra­molecular hydrogen bonds are shown as dashed lines.

With the salicylate anion, the carboxyl group is rotated slightly out of the benzene plane [torsion angle C2—C1—O11—C11 = −167.4 (4)°], comparing with −168.2 (3)° in polymorph 1 and 179.3 (1)° in the structure of the parent salicylic acid (Munshi & Guru Row, 2006[Munshi, P. & Guru Row, T. N. (2006). Acta Cryst. B62, 612-626.]). In all of the salicylate structures, including those of the anhydrous Li salt (Smith et al., 2013[Smith, A. L., Seol-Hee, K., Duggirala, N. K., Jin, J., Wojtas, L., Ehrhart, J., Giunta, B., Tan, J., Zaworotka, M. J. & Shytle, R. D. (2013). Mol. Pharm. 10, 4728-4738.]), the Li monohydrate salt (Wiesbrock & Schmidbaur, 2003b[Wiesbrock, F. & Schmidbaur, H. (2003b). CrystEngComm, 5, 503-505.]) and the K and Rb salt (Dinnebier et al., 2002[Dinnebier, R. E., Jalonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363-368.]) or salt adducts (Downie & Speakman, 1953[Downie, T. C. & Speakman, J. C. (1953). J. Chem. Soc. pp. 787-793.]), a short intra­molecular phenolic O—H⋯Ocarbox­yl hydrogen bond is present.

Synthesis and crystallization

The title compound was formed in the attempted synthesis of a Cs–aspirinate complex by the dropwise addition of cold 50 wt% aqueous caesium hydroxide solution to a solution containing 100 mg of acetyl­salicylic acid in 10 ml of 10 wt% ethanol/water. Room temperature evaporation resulted in a change in the colour of the solution to dark brown, finally giving colourless crystal plates of the title compound from which a specimen was cleaved for the X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Cs(C7H5O3)(H2O)]
Mr 288.04
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 6.3365 (4), 21.5911 (18), 6.6167 (6)
β (°) 100.661 (7)
V3) 889.62 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.13
Crystal size (mm) 0.35 × 0.25 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD-detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.758, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 3528, 1747, 1466
Rint 0.034
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.067, 1.02
No. of reflections 1747
No. of parameters 109
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.76, −0.78
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 144-152.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Poly[(µ2-aqua-µ4-(salicylato-κ4O1:O1:O1':O2)-caesium] top
Crystal data top
[Cs(C7H5O3)(H2O)]F(000) = 544
Mr = 288.04Dx = 2.151 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1068 reflections
a = 6.3365 (4) Åθ = 3.4–27.7°
b = 21.5911 (18) ŵ = 4.13 mm1
c = 6.6167 (6) ÅT = 200 K
β = 100.661 (7)°Plate, colourless
V = 889.62 (12) Å30.35 × 0.25 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1747 independent reflections
Radiation source: Enhance (Mo) X-ray source1466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 47
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 2526
Tmin = 0.758, Tmax = 0.980l = 78
3528 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0209P)2]
where P = (Fo2 + 2Fc2)/3
1747 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.78 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.29377 (5)0.55788 (1)0.71890 (4)0.0318 (1)
O1W0.2151 (7)0.50214 (16)0.2782 (5)0.0436 (14)
O20.5730 (7)0.61882 (17)0.4290 (6)0.0446 (12)
O110.9693 (6)0.59022 (14)0.0129 (5)0.0405 (14)
O120.6439 (6)0.58055 (16)0.0887 (5)0.0442 (12)
C10.8959 (8)0.64355 (18)0.3047 (7)0.0230 (14)
C20.7624 (9)0.64822 (19)0.4513 (7)0.0288 (16)
C30.8274 (10)0.6841 (2)0.6268 (8)0.0418 (19)
C41.0173 (11)0.7160 (2)0.6525 (8)0.045 (2)
C51.1508 (10)0.7116 (2)0.5083 (8)0.0441 (19)
C61.0884 (8)0.67583 (19)0.3357 (7)0.0307 (16)
C110.8343 (9)0.6023 (2)0.1204 (7)0.0293 (16)
H20.547 (12)0.605 (3)0.318 (9)0.0670*
H30.741900.686400.726600.0500*
H41.057400.740900.767800.0540*
H51.281000.732700.528500.0530*
H61.176700.673200.238200.0370*
H11W0.183 (10)0.4708 (19)0.191 (7)0.0650*
H12W0.184 (11)0.5353 (18)0.199 (7)0.0650*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0266 (2)0.0422 (2)0.0263 (2)0.0017 (2)0.0041 (1)0.0004 (1)
O1W0.041 (3)0.051 (2)0.034 (2)0.006 (2)0.0055 (19)0.0114 (16)
O20.029 (2)0.055 (2)0.052 (2)0.0078 (19)0.013 (2)0.005 (2)
O110.050 (3)0.044 (2)0.0298 (19)0.0028 (19)0.0131 (19)0.0068 (16)
O120.036 (2)0.051 (2)0.042 (2)0.0102 (19)0.0025 (19)0.0136 (17)
C10.025 (3)0.021 (2)0.021 (2)0.004 (2)0.001 (2)0.0025 (19)
C20.030 (3)0.024 (2)0.032 (3)0.004 (2)0.005 (2)0.004 (2)
C30.051 (4)0.042 (3)0.035 (3)0.006 (3)0.015 (3)0.002 (2)
C40.066 (5)0.033 (3)0.031 (3)0.005 (3)0.005 (3)0.009 (2)
C50.050 (4)0.035 (3)0.044 (3)0.014 (3)0.000 (3)0.000 (3)
C60.030 (3)0.030 (2)0.033 (3)0.004 (2)0.008 (2)0.003 (2)
C110.036 (3)0.027 (2)0.024 (3)0.003 (2)0.003 (2)0.007 (2)
Geometric parameters (Å, º) top
Cs1—O12i3.023 (3)C1—C111.502 (6)
Cs1—O1W3.108 (3)C1—C21.404 (7)
Cs1—O23.130 (4)C1—C61.387 (7)
Cs1—O11ii3.159 (4)C2—C31.393 (7)
Cs1—O12iii3.244 (3)C3—C41.370 (9)
Cs1—O1Wiii3.368 (4)C4—C51.391 (9)
O2—C21.342 (7)C5—C61.375 (7)
O11—C111.237 (6)C3—H30.9300
O12—C111.275 (7)C4—H40.9300
O1W—H11W0.89 (4)C5—H50.9300
O1W—H12W0.89 (4)C6—H60.9300
O2—H20.78 (6)
O1W—Cs1—O266.33 (10)Cs1—O1W—H12W103 (3)
O1W—Cs1—O11ii130.81 (10)Cs1—O2—H2112 (5)
O1W—Cs1—O12i142.02 (11)C2—O2—H2108 (6)
O1W—Cs1—O1Wiii81.03 (10)C2—C1—C6119.2 (4)
O1W—Cs1—O12iii89.90 (9)C2—C1—C11120.3 (4)
O2—Cs1—O11ii142.24 (9)C6—C1—C11120.5 (4)
O2—Cs1—O12i90.83 (10)C1—C2—C3119.5 (5)
O1Wiii—Cs1—O262.53 (10)O2—C2—C1122.1 (4)
O2—Cs1—O12iii125.89 (10)O2—C2—C3118.4 (5)
O11ii—Cs1—O12i85.96 (9)C2—C3—C4120.0 (5)
O1Wiii—Cs1—O11ii141.96 (8)C3—C4—C5120.8 (5)
O11ii—Cs1—O12iii90.45 (9)C4—C5—C6119.4 (5)
O1Wiii—Cs1—O12i61.23 (9)C1—C6—C5121.0 (5)
O12i—Cs1—O12iii79.27 (9)O11—C11—O12124.2 (4)
O1Wiii—Cs1—O12iii66.30 (9)O11—C11—C1119.2 (5)
Cs1—O1W—Cs1iii98.97 (11)O12—C11—C1116.6 (4)
Cs1—O2—C2136.7 (3)C2—C3—H3120.00
Cs1iv—O11—C11177.0 (3)C4—C3—H3120.00
Cs1v—O12—C11136.3 (3)C3—C4—H4120.00
Cs1iii—O12—C11103.4 (3)C5—C4—H4120.00
Cs1v—O12—Cs1iii100.74 (10)C4—C5—H5120.00
H11W—O1W—H12W103 (4)C6—C5—H5120.00
Cs1iii—O1W—H11W79 (4)C1—C6—H6119.00
Cs1iii—O1W—H12W115 (4)C5—C6—H6120.00
Cs1—O1W—H11W152 (3)
O2—Cs1—O1W—Cs1iii63.85 (11)Cs1v—O12—C11—C1139.7 (3)
O11ii—Cs1—O1W—Cs1iii156.51 (8)Cs1iii—O12—C11—O1179.6 (5)
O12i—Cs1—O1W—Cs1iii6.24 (19)Cs1iii—O12—C11—C198.6 (4)
O1Wiii—Cs1—O1W—Cs1iii0.02 (13)C6—C1—C2—O2179.1 (4)
O12iii—Cs1—O1W—Cs1iii66.00 (10)C6—C1—C2—C31.3 (7)
O1W—Cs1—O2—C2153.6 (5)C11—C1—C2—O23.0 (7)
O11ii—Cs1—O2—C279.6 (5)C11—C1—C2—C3176.6 (4)
O12i—Cs1—O2—C24.9 (4)C2—C1—C6—C50.7 (7)
O1Wiii—Cs1—O2—C261.6 (4)C11—C1—C6—C5177.2 (4)
O12iii—Cs1—O2—C282.3 (4)C2—C1—C11—O11167.4 (4)
O1W—Cs1—O12i—C11i46.9 (5)C2—C1—C11—O1210.9 (6)
O2—Cs1—O12i—C11i3.8 (4)C6—C1—C11—O1110.5 (6)
O1W—Cs1—O1Wiii—Cs1iii0.00 (10)C6—C1—C11—O12171.3 (4)
O2—Cs1—O1Wiii—Cs1iii67.92 (11)O2—C2—C3—C4178.4 (4)
O1W—Cs1—O12iii—C11iii73.3 (3)C1—C2—C3—C42.0 (7)
O2—Cs1—O12iii—C11iii133.5 (3)C2—C3—C4—C52.1 (8)
Cs1—O2—C2—C1147.1 (3)C3—C4—C5—C61.5 (7)
Cs1—O2—C2—C332.5 (7)C4—C5—C6—C10.8 (7)
Cs1v—O12—C11—O1142.2 (7)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z1; (v) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O120.78 (6)1.82 (6)2.516 (5)148 (8)
O1W—H11W···O11vi0.89 (4)2.00 (5)2.867 (5)165 (6)
O1W—H11W···O12vi0.89 (4)2.57 (5)3.268 (5)136 (5)
O1W—H12W···O11vii0.89 (4)2.04 (5)2.848 (5)151 (6)
Symmetry codes: (vi) x+1, y+1, z; (vii) x1, y, z.
 

Acknowledgements

The author acknowledges support from the Science and Engineering Faculty of the Queensland University of Technology.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDinnebier, R. E., Jalonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363–368.  CrossRef CAS Google Scholar
First citationDownie, T. C. & Speakman, J. C. (1953). J. Chem. Soc. pp. 787–793.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMunshi, P. & Guru Row, T. N. (2006). Acta Cryst. B62, 612–626.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, A. L., Seol-Hee, K., Duggirala, N. K., Jin, J., Wojtas, L., Ehrhart, J., Giunta, B., Tan, J., Zaworotka, M. J. & Shytle, R. D. (2013). Mol. Pharm. 10, 4728–4738.  CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 144–152.  CrossRef IUCr Journals Google Scholar
First citationWiesbrock, F. & Schmidbaur, H. (2003a). Inorg. Chem. 42, 7283–7289.  CSD CrossRef PubMed CAS Google Scholar
First citationWiesbrock, F. & Schmidbaur, H. (2003b). CrystEngComm, 5, 503–505.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds