metal-organic compounds
A second monoclinic polymorph of caesium salicylate monohydrate
aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
The structure of the title caesium salt with salicylic acid, poly[μ2-aqua-μ4-(salicylato-κ4O1:O1:O1′:O2)caesium], [Cs(C7H5O3)(H2O)]n, represents a second monoclinic polymorph of this compound. The two-dimensional coordination polymeric structure is based on a centrosymmetric dinuclear bridged repeat unit with each irregular CsO6 comprising a μ2-bridging water molecule and μ4-bridging O-atom donors, three from the carboxyl group and one from the phenolic group of the salicylate ligand. The Cs—O bond range is 3.023 (3)–3.368 (4) Å and the Cs⋯Cs separation within the dinuclear unit is 4.9265 (6) Å. The polymeric sheet structure lies parallel to (010) with the water molecule and the phenol group involved in intra-polymer O—H⋯Ocarboxyl hydrogen-bonding interactions.
Keywords: crystal structure; polymorphism; caesium salicylate.
CCDC reference: 1486005
Structure description
In the title complex salt, [Cs(C7H5O3)(H2O)]n (polymorph 2) (Fig. 1), although polymorphic with the Wiesbrock & Schmidbaur (2003a) crystal and forming a two-dimensional coordination polymeric structure, apart from the very obvious cell-parameter differences, particularly the disparate values of the unique b axis, the molecular structures are distinctly different. Polymorph 2 is based on a centrosymmetric dinuclear bridged repeat unit with each irregular CsO6 comprising a μ2-bridging water molecule (O1W), and μ4-bridging O-atom donors, three from the carboxyl group and one from the phenolic group of the salicylate ligand. The Cs—O bond-length range is 3.023 (3)–3.368 (4) Å (Table 1) and the Cs⋯Csiii separation within the dinuclear unit is 4.9265 (6) Å. With polymorph 1, the Cs—O range in the CsO7 coordination sphere is given as 3.071 (3)–3.584 (2) Å (although stated incorrectly as eight-coordinate), this would be reduced to CsO6 with the last value in the stated range being considered too long for a Cs—O bond (PLATON; Spek, 2009), with the sixth value being 3.341 (2) Å. The shortest Cs⋯Cs separation in polymorph 1 is also very different [4.1391 (3) Å].
|
The polymeric sheet structure in the title complex lies parallel to (010) (Figs. 2 and 3) and in the crystal, intra-layer hydrogen-bonding interactions (Table 2) involving H-atom donors of the coordinating water molecule and carboxyl O-atom acceptors are present (Fig. 3). Also present are short Cs1⋯C interactions to four of the salicylate ring C atoms [C1v 3.838 (4) Å; C4v 3.825 (5) Å; C5v 3.648 (5) Å; C6v 3.658 (5) Å; for symmetry code (v), see Table 2].
With the salicylate anion, the carboxyl group is rotated slightly out of the benzene plane [torsion angle C2—C1—O11—C11 = −167.4 (4)°], comparing with −168.2 (3)° in polymorph 1 and 179.3 (1)° in the structure of the parent salicylic acid (Munshi & Guru Row, 2006). In all of the salicylate structures, including those of the anhydrous Li salt (Smith et al., 2013), the Li monohydrate salt (Wiesbrock & Schmidbaur, 2003b) and the K and Rb salt (Dinnebier et al., 2002) or salt adducts (Downie & Speakman, 1953), a short intramolecular phenolic O—H⋯Ocarboxyl hydrogen bond is present.
Synthesis and crystallization
The title compound was formed in the attempted synthesis of a Cs–aspirinate complex by the dropwise addition of cold 50 wt% aqueous caesium hydroxide solution to a solution containing 100 mg of acetylsalicylic acid in 10 ml of 10 wt% ethanol/water. Room temperature evaporation resulted in a change in the colour of the solution to dark brown, finally giving colourless crystal plates of the title compound from which a specimen was cleaved for the X-ray analysis.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 1486005
10.1107/S2414314616009809/wm4017sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616009809/wm4017Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616009809/wm4017Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).[Cs(C7H5O3)(H2O)] | F(000) = 544 |
Mr = 288.04 | Dx = 2.151 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1068 reflections |
a = 6.3365 (4) Å | θ = 3.4–27.7° |
b = 21.5911 (18) Å | µ = 4.13 mm−1 |
c = 6.6167 (6) Å | T = 200 K |
β = 100.661 (7)° | Plate, colourless |
V = 889.62 (12) Å3 | 0.35 × 0.25 × 0.12 mm |
Z = 4 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1747 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1466 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.3° |
ω scans | h = −4→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −25→26 |
Tmin = 0.758, Tmax = 0.980 | l = −7→8 |
3528 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.067 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0209P)2] where P = (Fo2 + 2Fc2)/3 |
1747 reflections | (Δ/σ)max = 0.001 |
109 parameters | Δρmax = 0.76 e Å−3 |
0 restraints | Δρmin = −0.78 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.29377 (5) | 0.55788 (1) | 0.71890 (4) | 0.0318 (1) | |
O1W | 0.2151 (7) | 0.50214 (16) | 0.2782 (5) | 0.0436 (14) | |
O2 | 0.5730 (7) | 0.61882 (17) | 0.4290 (6) | 0.0446 (12) | |
O11 | 0.9693 (6) | 0.59022 (14) | 0.0129 (5) | 0.0405 (14) | |
O12 | 0.6439 (6) | 0.58055 (16) | 0.0887 (5) | 0.0442 (12) | |
C1 | 0.8959 (8) | 0.64355 (18) | 0.3047 (7) | 0.0230 (14) | |
C2 | 0.7624 (9) | 0.64822 (19) | 0.4513 (7) | 0.0288 (16) | |
C3 | 0.8274 (10) | 0.6841 (2) | 0.6268 (8) | 0.0418 (19) | |
C4 | 1.0173 (11) | 0.7160 (2) | 0.6525 (8) | 0.045 (2) | |
C5 | 1.1508 (10) | 0.7116 (2) | 0.5083 (8) | 0.0441 (19) | |
C6 | 1.0884 (8) | 0.67583 (19) | 0.3357 (7) | 0.0307 (16) | |
C11 | 0.8343 (9) | 0.6023 (2) | 0.1204 (7) | 0.0293 (16) | |
H2 | 0.547 (12) | 0.605 (3) | 0.318 (9) | 0.0670* | |
H3 | 0.74190 | 0.68640 | 0.72660 | 0.0500* | |
H4 | 1.05740 | 0.74090 | 0.76780 | 0.0540* | |
H5 | 1.28100 | 0.73270 | 0.52850 | 0.0530* | |
H6 | 1.17670 | 0.67320 | 0.23820 | 0.0370* | |
H11W | 0.183 (10) | 0.4708 (19) | 0.191 (7) | 0.0650* | |
H12W | 0.184 (11) | 0.5353 (18) | 0.199 (7) | 0.0650* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.0266 (2) | 0.0422 (2) | 0.0263 (2) | −0.0017 (2) | 0.0041 (1) | −0.0004 (1) |
O1W | 0.041 (3) | 0.051 (2) | 0.034 (2) | 0.006 (2) | −0.0055 (19) | −0.0114 (16) |
O2 | 0.029 (2) | 0.055 (2) | 0.052 (2) | −0.0078 (19) | 0.013 (2) | −0.005 (2) |
O11 | 0.050 (3) | 0.044 (2) | 0.0298 (19) | 0.0028 (19) | 0.0131 (19) | −0.0068 (16) |
O12 | 0.036 (2) | 0.051 (2) | 0.042 (2) | −0.0102 (19) | −0.0025 (19) | −0.0136 (17) |
C1 | 0.025 (3) | 0.021 (2) | 0.021 (2) | 0.004 (2) | −0.001 (2) | 0.0025 (19) |
C2 | 0.030 (3) | 0.024 (2) | 0.032 (3) | 0.004 (2) | 0.005 (2) | 0.004 (2) |
C3 | 0.051 (4) | 0.042 (3) | 0.035 (3) | 0.006 (3) | 0.015 (3) | −0.002 (2) |
C4 | 0.066 (5) | 0.033 (3) | 0.031 (3) | −0.005 (3) | −0.005 (3) | −0.009 (2) |
C5 | 0.050 (4) | 0.035 (3) | 0.044 (3) | −0.014 (3) | 0.000 (3) | 0.000 (3) |
C6 | 0.030 (3) | 0.030 (2) | 0.033 (3) | −0.004 (2) | 0.008 (2) | 0.003 (2) |
C11 | 0.036 (3) | 0.027 (2) | 0.024 (3) | 0.003 (2) | 0.003 (2) | 0.007 (2) |
Cs1—O12i | 3.023 (3) | C1—C11 | 1.502 (6) |
Cs1—O1W | 3.108 (3) | C1—C2 | 1.404 (7) |
Cs1—O2 | 3.130 (4) | C1—C6 | 1.387 (7) |
Cs1—O11ii | 3.159 (4) | C2—C3 | 1.393 (7) |
Cs1—O12iii | 3.244 (3) | C3—C4 | 1.370 (9) |
Cs1—O1Wiii | 3.368 (4) | C4—C5 | 1.391 (9) |
O2—C2 | 1.342 (7) | C5—C6 | 1.375 (7) |
O11—C11 | 1.237 (6) | C3—H3 | 0.9300 |
O12—C11 | 1.275 (7) | C4—H4 | 0.9300 |
O1W—H11W | 0.89 (4) | C5—H5 | 0.9300 |
O1W—H12W | 0.89 (4) | C6—H6 | 0.9300 |
O2—H2 | 0.78 (6) | ||
O1W—Cs1—O2 | 66.33 (10) | Cs1—O1W—H12W | 103 (3) |
O1W—Cs1—O11ii | 130.81 (10) | Cs1—O2—H2 | 112 (5) |
O1W—Cs1—O12i | 142.02 (11) | C2—O2—H2 | 108 (6) |
O1W—Cs1—O1Wiii | 81.03 (10) | C2—C1—C6 | 119.2 (4) |
O1W—Cs1—O12iii | 89.90 (9) | C2—C1—C11 | 120.3 (4) |
O2—Cs1—O11ii | 142.24 (9) | C6—C1—C11 | 120.5 (4) |
O2—Cs1—O12i | 90.83 (10) | C1—C2—C3 | 119.5 (5) |
O1Wiii—Cs1—O2 | 62.53 (10) | O2—C2—C1 | 122.1 (4) |
O2—Cs1—O12iii | 125.89 (10) | O2—C2—C3 | 118.4 (5) |
O11ii—Cs1—O12i | 85.96 (9) | C2—C3—C4 | 120.0 (5) |
O1Wiii—Cs1—O11ii | 141.96 (8) | C3—C4—C5 | 120.8 (5) |
O11ii—Cs1—O12iii | 90.45 (9) | C4—C5—C6 | 119.4 (5) |
O1Wiii—Cs1—O12i | 61.23 (9) | C1—C6—C5 | 121.0 (5) |
O12i—Cs1—O12iii | 79.27 (9) | O11—C11—O12 | 124.2 (4) |
O1Wiii—Cs1—O12iii | 66.30 (9) | O11—C11—C1 | 119.2 (5) |
Cs1—O1W—Cs1iii | 98.97 (11) | O12—C11—C1 | 116.6 (4) |
Cs1—O2—C2 | 136.7 (3) | C2—C3—H3 | 120.00 |
Cs1iv—O11—C11 | 177.0 (3) | C4—C3—H3 | 120.00 |
Cs1v—O12—C11 | 136.3 (3) | C3—C4—H4 | 120.00 |
Cs1iii—O12—C11 | 103.4 (3) | C5—C4—H4 | 120.00 |
Cs1v—O12—Cs1iii | 100.74 (10) | C4—C5—H5 | 120.00 |
H11W—O1W—H12W | 103 (4) | C6—C5—H5 | 120.00 |
Cs1iii—O1W—H11W | 79 (4) | C1—C6—H6 | 119.00 |
Cs1iii—O1W—H12W | 115 (4) | C5—C6—H6 | 120.00 |
Cs1—O1W—H11W | 152 (3) | ||
O2—Cs1—O1W—Cs1iii | 63.85 (11) | Cs1v—O12—C11—C1 | 139.7 (3) |
O11ii—Cs1—O1W—Cs1iii | −156.51 (8) | Cs1iii—O12—C11—O11 | 79.6 (5) |
O12i—Cs1—O1W—Cs1iii | 6.24 (19) | Cs1iii—O12—C11—C1 | −98.6 (4) |
O1Wiii—Cs1—O1W—Cs1iii | −0.02 (13) | C6—C1—C2—O2 | 179.1 (4) |
O12iii—Cs1—O1W—Cs1iii | −66.00 (10) | C6—C1—C2—C3 | −1.3 (7) |
O1W—Cs1—O2—C2 | −153.6 (5) | C11—C1—C2—O2 | −3.0 (7) |
O11ii—Cs1—O2—C2 | 79.6 (5) | C11—C1—C2—C3 | 176.6 (4) |
O12i—Cs1—O2—C2 | −4.9 (4) | C2—C1—C6—C5 | 0.7 (7) |
O1Wiii—Cs1—O2—C2 | −61.6 (4) | C11—C1—C6—C5 | −177.2 (4) |
O12iii—Cs1—O2—C2 | −82.3 (4) | C2—C1—C11—O11 | −167.4 (4) |
O1W—Cs1—O12i—C11i | 46.9 (5) | C2—C1—C11—O12 | 10.9 (6) |
O2—Cs1—O12i—C11i | −3.8 (4) | C6—C1—C11—O11 | 10.5 (6) |
O1W—Cs1—O1Wiii—Cs1iii | 0.00 (10) | C6—C1—C11—O12 | −171.3 (4) |
O2—Cs1—O1Wiii—Cs1iii | −67.92 (11) | O2—C2—C3—C4 | −178.4 (4) |
O1W—Cs1—O12iii—C11iii | −73.3 (3) | C1—C2—C3—C4 | 2.0 (7) |
O2—Cs1—O12iii—C11iii | −133.5 (3) | C2—C3—C4—C5 | −2.1 (8) |
Cs1—O2—C2—C1 | 147.1 (3) | C3—C4—C5—C6 | 1.5 (7) |
Cs1—O2—C2—C3 | −32.5 (7) | C4—C5—C6—C1 | −0.8 (7) |
Cs1v—O12—C11—O11 | −42.2 (7) |
Symmetry codes: (i) x, y, z+1; (ii) x−1, y, z+1; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z−1; (v) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O12 | 0.78 (6) | 1.82 (6) | 2.516 (5) | 148 (8) |
O1W—H11W···O11vi | 0.89 (4) | 2.00 (5) | 2.867 (5) | 165 (6) |
O1W—H11W···O12vi | 0.89 (4) | 2.57 (5) | 3.268 (5) | 136 (5) |
O1W—H12W···O11vii | 0.89 (4) | 2.04 (5) | 2.848 (5) | 151 (6) |
Symmetry codes: (vi) −x+1, −y+1, −z; (vii) x−1, y, z. |
Acknowledgements
The author acknowledges support from the Science and Engineering Faculty of the Queensland University of Technology.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Dinnebier, R. E., Jalonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363–368. CrossRef CAS Google Scholar
Downie, T. C. & Speakman, J. C. (1953). J. Chem. Soc. pp. 787–793. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Munshi, P. & Guru Row, T. N. (2006). Acta Cryst. B62, 612–626. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, A. L., Seol-Hee, K., Duggirala, N. K., Jin, J., Wojtas, L., Ehrhart, J., Giunta, B., Tan, J., Zaworotka, M. J. & Shytle, R. D. (2013). Mol. Pharm. 10, 4728–4738. CSD CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 144–152. CrossRef IUCr Journals Google Scholar
Wiesbrock, F. & Schmidbaur, H. (2003a). Inorg. Chem. 42, 7283–7289. CSD CrossRef PubMed CAS Google Scholar
Wiesbrock, F. & Schmidbaur, H. (2003b). CrystEngComm, 5, 503–505. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.