metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[sodium-di-μ-aqua-μ-(boric acid)-μ-succinato-sodium-di-μ-aqua] boric acid monosolvate]

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, Alagappa University, Karaikkudi 630 003, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, abhaskaran_68@yahoo.co.in

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 May 2016; accepted 11 June 2016; online 17 June 2016)

The title polymeric compound, {[Na2(C4H4O4)(H3BO3)(H2O)4]·H3BO3}n, comprises [101] chains of edge-sharing [NaO6] octa­hedra flanked by succinate and boric acid ligands. An intricate three-dimensional network is formed by O—H⋯O hydrogen bonds involving all components of the crystal. The crystal investigated was a non-merohedral twin; major component = 83%.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Owing to their rich structural chemistry and potential applications in mineralogy (Grice et al., 1999[Grice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731-762.]) and nonlinear optical materials (Touboul et al., 2003[Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327-1342.]), borates have provided an abounding area of research for over half a century. Hence, borates with various main groups and transition metals have been widely explored. However, less work has been carried out on inorganic–organic hybrid borates.

The asymmetric unit of the title compound contains two Na+ cations (Na1 and Na2) which are octa­hedrally coordinated. Both cations are bonded to four bridging water mol­ecules, one carboxyl­ate O atom of the succinate anion and one O atom of a non-deprotonated boric acid ligand. In the crystal, the [NaO6] octa­hedra are linked through edge-sharing into chains extending parallel to [101] (Fig. 1[link]). The succinato and boric acid ligands additionally bridge these chains. A pair of O—H⋯O hydrogen bonds [O5—H5⋯O7iii; O9—H9⋯O11iii; for the symmetry code, see: Table 1[link]] generates an R22(8) ring motif. The chains exhibit intra­chain hydrogen bonding and are linked through the boric acid solvent mol­ecules by other O—H⋯O hydrogen bonds into a three-dimensional network (Table 1[link] and Fig. 2[link]). Structures with boric acid as a solvent mol­ecule with hydrogen-bonded networks have been reported by Li et al. (1999[Li, Q., Xue, F. & Mak, T. C. W. (1999). Inorg. Chem. 38, 4142-4145.]) and Shao et al., (2010[Shao, Z.-D., Zhang, Y.-Q., Wu, S.-L. & Liang, Y.-X. (2010). Acta Cryst. E66, m1460-m1461.]). Bond lengths and angles of the succinate anion in the title structure are comparable with those of a related structure (Sarr et al., 2015[Sarr, M., Diasse-Sarr, A., Diop, L., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 899-901.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O12i 0.84 (1) 2.01 (1) 2.825 (2) 166 (2)
O1—H1B⋯O11ii 0.85 (1) 2.00 (1) 2.825 (2) 164 (3)
O2—H2C⋯O14iii 0.82 (1) 2.23 (1) 3.045 (2) 176 (2)
O2—H2D⋯O10iv 0.81 (1) 2.01 (1) 2.822 (2) 175 (3)
O3—H3C⋯O14v 0.82 (1) 2.02 (1) 2.840 (2) 173 (3)
O3—H3D⋯O10vi 0.83 (1) 2.21 (1) 3.035 (2) 172 (3)
O4—H4A⋯O11iv 0.83 (1) 2.12 (2) 2.923 (2) 164 (4)
O4—H4B⋯O12iii 0.82 (1) 2.01 (1) 2.818 (2) 169 (2)
O5—H5⋯O7iii 0.83 (1) 1.87 (1) 2.6888 (18) 173 (2)
O8—H8⋯O13vii 0.83 (1) 1.89 (1) 2.711 (2) 174 (2)
O9—H9⋯O11iii 0.82 (1) 1.79 (1) 2.6044 (18) 176 (2)
O12—H12⋯O10iv 0.82 (1) 1.83 (1) 2.6261 (18) 167 (2)
O13—H13⋯O6iv 0.81 (1) 1.81 (1) 2.6113 (19) 172 (3)
O14—H14⋯O9viii 0.83 (1) 1.81 (1) 2.6384 (19) 175 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y, -z+1; (v) x, y, z-1; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The chain structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (a) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (b) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}].]
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the b axis. O—H⋯O hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

A mixture of boric acid (1.24 g; 0.02 mol) and succinic acid (1.18 g; 0.01 mol) in deionized water was heated at 353 K in a round bottom flask attached with a reflux condenser for 6 h. Then the temperature was reduced to 313 K before sodium carbonate (1.06 g; 0.01 mol) was added in small portions to the solution that was stirred for about 12 h. The resulting homogeneous solution was filtered through filter paper and was allowed to evaporate at a constant temperature of 313 K using a temperature bath. After a period of 9 to 10 weeks, crystals suitable for X-ray diffraction could be harvested.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Anisotropic displacement parameters of atoms O8, B1 and O10, C1 were restrained within 0.001 Å2 by using the DELU command in SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). The crystal investigated was refined under consideration as a two-component twin by non-merohedry. The twin ratio refined to a value of 0.83:0.17.

Table 2
Experimental details

Crystal data
Chemical formula [Na2(C4H4O4)(BH3O3)(H2O)4]·BH3O3
Mr 357.78
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 7.8524 (4), 14.8559 (9), 12.6646 (6)
β (°) 96.964 (5)
V3) 1466.48 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.30 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (TWINABS; Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.941, 0.960
No. of measured, independent and observed [I > 2σ(I)] reflections 24155, 24155, 14052
Rint 0.000
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.164, 1.09
No. of reflections 24155
No. of parameters 257
No. of restraints 16
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

catena-Poly[[sodium-di-µ-aqua-µ-(boric acid)-µ-succinato-sodium-di-µ-aqua] boric acid monosolvate] top
Crystal data top
[Na2(C4H4O4)(BH3O3)(H2O)4]·BH3O3F(000) = 744
Mr = 357.78Dx = 1.621 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9068 reflections
a = 7.8524 (4) Åθ = 2.7–23.6°
b = 14.8559 (9) ŵ = 0.21 mm1
c = 12.6646 (6) ÅT = 295 K
β = 96.964 (5)°Block, colourless
V = 1466.48 (14) Å30.30 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
24155 independent reflections
Radiation source: fine-focus sealed tube14052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω and φ scanθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
h = 99
Tmin = 0.941, Tmax = 0.960k = 1717
24155 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0211P)2 + 6.2176P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
24155 reflectionsΔρmax = 0.53 e Å3
257 parametersΔρmin = 0.44 e Å3
16 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00222 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1246 (2)0.02094 (12)0.36401 (15)0.0295 (4)
C20.2195 (2)0.01759 (12)0.46482 (15)0.0342 (5)
H2A0.31620.05210.44580.041*
H2B0.14350.05930.49500.041*
C30.2852 (3)0.04843 (12)0.54944 (15)0.0369 (5)
H3A0.36210.09030.52040.044*
H3B0.18940.08270.57010.044*
C40.3792 (2)0.00422 (13)0.64725 (15)0.0318 (5)
B10.1614 (3)0.41227 (15)0.39628 (17)0.0341 (6)
B20.1553 (3)0.09750 (15)0.88974 (17)0.0300 (5)
O10.37630 (19)0.19833 (11)0.37142 (12)0.0371 (4)
O20.0207 (2)0.21732 (12)0.49534 (13)0.0413 (4)
O30.1223 (2)0.24810 (12)0.12148 (13)0.0433 (4)
O40.21781 (19)0.20360 (12)0.23010 (12)0.0394 (4)
O90.1317 (2)0.50134 (9)0.38965 (11)0.0417 (4)
O50.08776 (19)0.35194 (9)0.32262 (11)0.0393 (4)
O80.2674 (2)0.37719 (10)0.47929 (11)0.0441 (4)
O60.06469 (18)0.03609 (8)0.29602 (10)0.0442 (4)
O100.10757 (17)0.10483 (8)0.35306 (10)0.0352 (3)
O70.38951 (17)0.07937 (9)0.65379 (10)0.0402 (4)
O110.44516 (17)0.05839 (8)0.71869 (10)0.0378 (4)
O120.09010 (19)0.16059 (9)0.81646 (11)0.0370 (4)
O130.1246 (2)0.00877 (9)0.87999 (12)0.0432 (4)
O140.25890 (19)0.13058 (9)0.97609 (11)0.0389 (4)
Na10.07984 (10)0.19493 (5)0.30174 (6)0.0365 (2)
Na20.32232 (10)0.22915 (5)0.55892 (6)0.0401 (2)
H1A0.428 (3)0.2458 (10)0.360 (2)0.081 (10)*
H1B0.446 (3)0.1637 (15)0.346 (2)0.107 (12)*
H2C0.048 (3)0.2588 (12)0.4929 (19)0.066 (9)*
H2D0.020 (4)0.1874 (16)0.5400 (18)0.107 (13)*
H3C0.162 (3)0.2105 (13)0.0836 (18)0.077 (10)*
H3D0.188 (3)0.2916 (13)0.131 (2)0.109 (13)*
H4A0.268 (5)0.1556 (15)0.240 (4)0.24 (2)*
H4B0.264 (2)0.2419 (10)0.2627 (14)0.029 (6)*
H50.027 (2)0.3771 (13)0.2735 (13)0.058 (8)*
H80.306 (3)0.4183 (12)0.5194 (16)0.080 (9)*
H120.031 (3)0.1355 (14)0.7680 (14)0.074 (9)*
H130.075 (3)0.0056 (15)0.8227 (11)0.080 (9)*
H140.291 (3)0.0877 (10)1.0157 (14)0.055 (8)*
H90.069 (2)0.5193 (14)0.3373 (12)0.068 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0335 (12)0.0268 (8)0.0264 (11)0.0020 (9)0.0041 (9)0.0013 (9)
C20.0378 (12)0.0273 (11)0.0329 (12)0.0043 (9)0.0143 (9)0.0004 (9)
C30.0444 (13)0.0315 (12)0.0316 (12)0.0057 (10)0.0080 (10)0.0037 (9)
C40.0362 (13)0.0281 (12)0.0290 (11)0.0001 (9)0.0046 (9)0.0038 (9)
B10.0509 (16)0.0244 (13)0.0249 (12)0.0006 (11)0.0041 (9)0.0036 (9)
B20.0390 (14)0.0258 (13)0.0238 (12)0.0012 (10)0.0022 (10)0.0037 (9)
O10.0373 (9)0.0296 (9)0.0437 (9)0.0029 (8)0.0024 (7)0.0058 (7)
O20.0407 (10)0.0381 (10)0.0445 (10)0.0016 (8)0.0026 (8)0.0026 (8)
O30.0455 (11)0.0465 (11)0.0371 (10)0.0040 (9)0.0015 (8)0.0044 (8)
O40.0386 (9)0.0385 (10)0.0409 (9)0.0039 (8)0.0036 (7)0.0013 (8)
O90.0624 (11)0.0236 (8)0.0326 (9)0.0031 (7)0.0205 (8)0.0004 (6)
O50.0528 (10)0.0274 (8)0.0323 (9)0.0040 (7)0.0174 (7)0.0022 (6)
O80.0639 (11)0.0274 (9)0.0348 (8)0.0053 (7)0.0184 (7)0.0007 (7)
O60.0649 (11)0.0272 (8)0.0339 (8)0.0020 (7)0.0210 (7)0.0012 (6)
O100.0489 (9)0.0232 (6)0.0302 (8)0.0013 (6)0.0091 (6)0.0009 (6)
O70.0532 (10)0.0276 (8)0.0356 (8)0.0011 (7)0.0124 (7)0.0030 (6)
O110.0529 (9)0.0273 (8)0.0290 (8)0.0015 (7)0.0122 (7)0.0008 (6)
O120.0547 (10)0.0232 (8)0.0294 (8)0.0014 (7)0.0100 (7)0.0007 (6)
O130.0660 (11)0.0247 (8)0.0329 (9)0.0023 (7)0.0175 (8)0.0021 (7)
O140.0529 (10)0.0267 (9)0.0326 (8)0.0007 (7)0.0132 (7)0.0020 (7)
Na10.0379 (5)0.0293 (5)0.0395 (5)0.0016 (4)0.0062 (4)0.0003 (4)
Na20.0425 (5)0.0421 (5)0.0328 (5)0.0004 (4)0.0077 (4)0.0043 (4)
Geometric parameters (Å, º) top
C1—O61.258 (2)O2—H2C0.816 (9)
C1—O101.259 (2)O2—H2D0.814 (9)
C1—C21.511 (2)O3—Na2i2.4161 (19)
C2—C31.497 (2)O3—Na12.4761 (18)
C2—H2A0.9700O3—H3C0.822 (9)
C2—H2B0.9700O3—H3D0.828 (9)
C3—C41.513 (2)O4—Na12.4059 (17)
C3—H3A0.9700O4—Na2i2.4419 (17)
C3—H3B0.9700O4—H4A0.830 (10)
C4—O71.247 (2)O4—H4B0.815 (9)
C4—O111.273 (2)O9—H90.820 (9)
B1—O91.345 (2)O5—Na12.3474 (15)
B1—O81.363 (3)O5—H50.826 (9)
B1—O51.370 (3)O8—Na22.4361 (16)
B2—O131.343 (2)O8—H80.829 (9)
B2—O141.372 (2)O6—Na12.3634 (14)
B2—O121.374 (3)O7—Na22.5533 (15)
O1—Na12.3879 (17)O12—H120.815 (9)
O1—Na22.5044 (17)O13—H130.810 (9)
O1—H1A0.836 (9)O14—H140.831 (9)
O1—H1B0.845 (9)Na1—Na23.6039 (11)
O2—Na22.4135 (18)Na1—Na2i3.6483 (11)
O2—Na12.5716 (18)
O6—C1—O10124.41 (17)Na1—O4—H4B108.8 (15)
O6—C1—C2115.38 (16)Na2i—O4—H4B106.2 (14)
O10—C1—C2120.20 (16)H4A—O4—H4B106 (3)
C3—C2—C1116.65 (15)B1—O9—H9117.0 (16)
C3—C2—H2A108.1B1—O5—Na1136.87 (13)
C1—C2—H2A108.1B1—O5—H5111.9 (15)
C3—C2—H2B108.1Na1—O5—H5111.1 (15)
C1—C2—H2B108.1B1—O8—Na2136.51 (14)
H2A—C2—H2B107.3B1—O8—H8109.7 (17)
C2—C3—C4113.16 (16)Na2—O8—H8112.1 (17)
C2—C3—H3A108.9C1—O6—Na1129.66 (12)
C4—C3—H3A108.9C4—O7—Na2145.98 (12)
C2—C3—H3B108.9B2—O12—H12109.2 (17)
C4—C3—H3B108.9B2—O13—H13113.8 (17)
H3A—C3—H3B107.8B2—O14—H14108.4 (16)
O7—C4—O11124.39 (17)O5—Na1—O6174.95 (6)
O7—C4—C3120.54 (17)O5—Na1—O185.76 (6)
O11—C4—C3115.07 (16)O6—Na1—O194.34 (6)
O9—B1—O8120.64 (19)O5—Na1—O490.03 (6)
O9—B1—O5123.06 (19)O6—Na1—O489.94 (6)
O8—B1—O5116.30 (19)O1—Na1—O4175.69 (7)
O13—B2—O14120.48 (18)O5—Na1—O377.42 (6)
O13—B2—O12124.03 (18)O6—Na1—O3107.58 (6)
O14—B2—O12115.49 (18)O1—Na1—O395.73 (6)
Na1—O1—Na294.86 (6)O4—Na1—O382.44 (6)
Na1—O1—H1A115.2 (18)O5—Na1—O276.67 (6)
Na2—O1—H1A98.8 (18)O6—Na1—O298.29 (6)
Na1—O1—H1B120 (2)O1—Na1—O285.73 (6)
Na2—O1—H1B132 (2)O4—Na1—O294.20 (6)
H1A—O1—H1B95 (2)O3—Na1—O2153.87 (7)
Na2—O2—Na192.54 (6)O2—Na2—O3ii176.13 (7)
Na2—O2—H2C124.9 (18)O2—Na2—O879.06 (6)
Na1—O2—H2C104.8 (17)O3ii—Na2—O897.25 (6)
Na2—O2—H2D105 (2)O2—Na2—O4ii95.68 (6)
Na1—O2—H2D136 (2)O3ii—Na2—O4ii82.95 (6)
H2C—O2—H2D97 (2)O8—Na2—O4ii87.86 (6)
Na2i—O3—Na196.44 (6)O2—Na2—O186.70 (6)
Na2i—O3—H3C109.1 (18)O3ii—Na2—O193.80 (6)
Na1—O3—H3C115.1 (19)O8—Na2—O179.30 (6)
Na2i—O3—H3D121 (2)O4ii—Na2—O1166.28 (7)
Na1—O3—H3D105 (2)O2—Na2—O7103.41 (6)
H3C—O3—H3D110 (3)O3ii—Na2—O780.21 (6)
Na1—O4—Na2i97.63 (6)O8—Na2—O7176.09 (6)
Na1—O4—H4A111 (3)O4ii—Na2—O788.87 (6)
Na2i—O4—H4A127 (3)O1—Na2—O7103.76 (5)
O6—C1—C2—C3177.20 (18)Na2i—O4—Na1—O2148.34 (6)
O10—C1—C2—C31.7 (3)Na2i—O3—Na1—O586.09 (6)
C1—C2—C3—C4179.70 (17)Na2i—O3—Na1—O693.17 (7)
C2—C3—C4—O73.1 (3)Na2i—O3—Na1—O1170.43 (7)
C2—C3—C4—O11176.34 (17)Na2i—O3—Na1—O45.64 (6)
O9—B1—O5—Na1174.98 (14)Na2i—O3—Na1—O278.46 (15)
O8—B1—O5—Na14.3 (3)Na2—O2—Na1—O583.43 (6)
O9—B1—O8—Na2162.69 (15)Na2—O2—Na1—O696.98 (6)
O5—B1—O8—Na216.6 (3)Na2—O2—Na1—O13.22 (6)
O10—C1—O6—Na1179.34 (13)Na2—O2—Na1—O4172.46 (7)
C2—C1—O6—Na10.5 (3)Na2—O2—Na1—O391.08 (14)
O11—C4—O7—Na2175.26 (14)Na1—O2—Na2—O876.67 (6)
C3—C4—O7—Na24.1 (4)Na1—O2—Na2—O4ii163.38 (6)
B1—O5—Na1—O139.8 (2)Na1—O2—Na2—O13.06 (6)
B1—O5—Na1—O4141.1 (2)Na1—O2—Na2—O7106.42 (6)
B1—O5—Na1—O3136.7 (2)B1—O8—Na2—O231.8 (2)
B1—O5—Na1—O246.8 (2)B1—O8—Na2—O3ii149.4 (2)
C1—O6—Na1—O143.80 (18)B1—O8—Na2—O4ii128.0 (2)
C1—O6—Na1—O4136.74 (17)B1—O8—Na2—O156.9 (2)
C1—O6—Na1—O3141.21 (17)Na1—O1—Na2—O23.31 (6)
C1—O6—Na1—O242.50 (18)Na1—O1—Na2—O3ii172.84 (6)
Na2—O1—Na1—O573.82 (6)Na1—O1—Na2—O876.18 (6)
Na2—O1—Na1—O6101.12 (6)Na1—O1—Na2—O4ii97.1 (3)
Na2—O1—Na1—O3150.70 (6)Na1—O1—Na2—O7106.31 (6)
Na2—O1—Na1—O23.11 (6)C4—O7—Na2—O251.3 (2)
Na2i—O4—Na1—O571.71 (6)C4—O7—Na2—O3ii130.1 (2)
Na2i—O4—Na1—O6113.35 (6)C4—O7—Na2—O4ii146.9 (2)
Na2i—O4—Na1—O35.60 (6)C4—O7—Na2—O138.5 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O12iii0.84 (1)2.01 (1)2.825 (2)166 (2)
O1—H1B···O11iv0.85 (1)2.00 (1)2.825 (2)164 (3)
O2—H2C···O14i0.82 (1)2.23 (1)3.045 (2)176 (2)
O2—H2D···O10v0.81 (1)2.01 (1)2.822 (2)175 (3)
O3—H3C···O14vi0.82 (1)2.02 (1)2.840 (2)173 (3)
O3—H3D···O10vii0.83 (1)2.21 (1)3.035 (2)172 (3)
O4—H4A···O11v0.83 (1)2.12 (2)2.923 (2)164 (4)
O4—H4B···O12i0.82 (1)2.01 (1)2.818 (2)169 (2)
O5—H5···O7i0.83 (1)1.87 (1)2.6888 (18)173 (2)
O8—H8···O13viii0.83 (1)1.89 (1)2.711 (2)174 (2)
O9—H9···O11i0.82 (1)1.79 (1)2.6044 (18)176 (2)
O12—H12···O10v0.82 (1)1.83 (1)2.6261 (18)167 (2)
O13—H13···O6v0.81 (1)1.81 (1)2.6113 (19)172 (3)
O14—H14···O9ix0.83 (1)1.81 (1)2.6384 (19)175 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z1; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z+3/2; (ix) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731–762.  CAS Google Scholar
First citationLi, Q., Xue, F. & Mak, T. C. W. (1999). Inorg. Chem. 38, 4142–4145.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarr, M., Diasse-Sarr, A., Diop, L., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 899–901.  CSD CrossRef IUCr Journals Google Scholar
First citationShao, Z.-D., Zhang, Y.-Q., Wu, S.-L. & Liang, Y.-X. (2010). Acta Cryst. E66, m1460–m1461.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTouboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327–1342.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds