organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Methyl­pyridinium 4-nitro­benzoate–4-nitro­benzoic acid (1/1)

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and cPost Graduate and Research Department of Physics, The American College, Madurai 625 002, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 13 June 2016; accepted 16 June 2016; online 21 June 2016)

In the title compound, C6H8N+·C7H4NO4·C7H5NO4, the cation is protonated at its pyridine N atom and makes a dihedral angle of 74.14 (12)° with the benzene ring of the anion. The benzene ring of the neutral mol­ecule and the pyridine ring are inclined at an angle of 79.20 (12)°. The two benzene rings form a dihedral angle of 6.00 (12)° with each other. In the crystal, N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds link the cations, anions and neutral molecules to form layers parallel to the ac plane, which enlose R44(18) ring motifs. The layers are linked by further C—H⋯O hydrogen bonds and C—H⋯π interactions, forming a three-dimensional supramolecular architecture.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine derivatives are known to exhibit pharmacological properties such as anti-inflammatory (Abdel-Alim et al., 2005[Abdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Mothy, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637-647.]), anti­cancer (Girgis et al., 2006[Girgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466-4476.]) and anxiolytic (Spanka et al., 2010[Spanka, C., Glatthar, R., Desrayaud, S., Fendt, M., Orain, D., Troxler, T. & Vranesic, I. (2010). Bioorg. Med. Chem. Lett. 20, 184-188.]) activities. We herewith report the synthesis and the crystal structure of the title compound (Fig. 1[link]). The geometric parameters are comparable to those of reported similar structures (Quah et al., 2008[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878-o1879.], 2010[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2255-o2256.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, showing the atom labelling and 30% probability displacement ellipsoids.

The title compound contains a 3-methyl­pyridinium cation protonated at its N atom, a 4-nitro­benzoate deprotonated at its hy­droxy O atom and a neutral 4-nitro­benzoic acid mol­ecule. The benzene rings (C1–C6 and C8–C13) make a dihedral angle of 6.00 (12)°. The C8–C13 benzene ring of the anion forms a dihedral angle of 74.14 (12)° with the pyridine ring (N3/C15–C19) of the cation. The C1–C6 benzene ring of the neutral mol­ecule and the pyridine ring of the caion are inclined at an angle of 79.20 (12)°.

In the crystal, N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds link the cations, anions and neutral molecules to form layers parallel to (010) (Fig. 2[link] and Table 1[link]), which enclose R44(18) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The layers are linked by further C—H⋯O hydrogen bonds and C—H⋯π interactions, forming a three-dimensional structure (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the ring (C1-C6)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4 0.88 (2) 1.73 (2) 2.612 (3) 175 (3)
O6—H6A⋯O3 0.83 (2) 1.70 (2) 2.518 (2) 175 (4)
C9—H9⋯O1i 0.93 2.47 3.271 (3) 144
C15—H15⋯O3ii 0.93 2.41 3.218 (3) 145
C16—H16⋯O2i 0.93 2.59 3.353 (3) 140
C19—H19⋯O5iii 0.93 2.42 3.293 (3) 156
C13—H13⋯Cg2iv 0.93 2.83 3.564 (3) 137
Symmetry codes: (i) x-1, y, z+1; (ii) x-1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iv) [-x+2, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1[link]) and C-bound H atoms have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized using the raw materials 4-nitro­benzoic acid (1.67 g) and 3-methyl­pyridine (0.93 g) in an equimolar ratio. These reactants were dissolved in 15 ml of acetone and stirred for 4 h and the solution was kept at room temperature. After a span of 10 d, single crystals suitable for X-ray diffraction were harvested.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H8N+·C7H4NO4·C7H5NO4
Mr 427.37
Crystal system, space group Monoclinic, P21
Temperature (K) 295
a, b, c (Å) 6.3586 (4), 13.6276 (9), 11.7469 (8)
β (°) 104.559 (2)
V3) 985.21 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.28 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.969, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 17209, 4526, 3163
Rint 0.026
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.09
No. of reflections 4526
No. of parameters 288
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.19
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2158 Friedel pairs
Absolute structure parameter 0.3 (12)
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

3-Methylpyridinium 4-nitrobenzoate–4-nitrobenzoic acid (1/1) top
Crystal data top
C6H8N+·C7H4NO4·C7H5NO4F(000) = 444
Mr = 427.37Dx = 1.441 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6874 reflections
a = 6.3586 (4) Åθ = 2.3–27.7°
b = 13.6276 (9) ŵ = 0.11 mm1
c = 11.7469 (8) ÅT = 295 K
β = 104.559 (2)°Block, colourless
V = 985.21 (11) Å30.28 × 0.24 × 0.20 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4526 independent reflections
Radiation source: fine-focus sealed tube3163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scanθmax = 27.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.969, Tmax = 0.978k = 1717
17209 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.1953P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4526 reflectionsΔρmax = 0.15 e Å3
288 parametersΔρmin = 0.19 e Å3
3 restraintsAbsolute structure: Flack (1983), 2158 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.3 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8161 (4)0.49994 (17)0.1300 (2)0.0378 (5)
C20.6831 (4)0.45484 (19)0.0341 (2)0.0419 (6)
H20.54860.43090.03860.050*
C30.7479 (4)0.44484 (19)0.0690 (2)0.0427 (5)
H30.65800.41460.13440.051*
C40.9468 (4)0.48028 (17)0.07302 (19)0.0349 (5)
C51.0827 (4)0.52619 (19)0.0205 (2)0.0449 (6)
H51.21680.55040.01550.054*
C61.0143 (4)0.5356 (2)0.1229 (2)0.0465 (6)
H61.10390.56640.18780.056*
C70.7465 (4)0.5079 (2)0.2437 (2)0.0470 (6)
C80.6962 (4)0.72107 (17)0.8926 (2)0.0424 (6)
C90.5585 (4)0.66743 (18)0.8068 (2)0.0476 (6)
H90.42600.64530.81700.057*
C100.6199 (4)0.64688 (18)0.7053 (2)0.0457 (6)
H100.52790.61070.64610.055*
C110.8168 (4)0.67933 (17)0.6901 (2)0.0382 (5)
C120.9493 (4)0.73511 (19)0.7767 (2)0.0497 (6)
H121.07970.75920.76570.060*
C130.8912 (4)0.7557 (2)0.8794 (2)0.0527 (7)
H130.98220.79240.93850.063*
C140.8932 (4)0.65374 (19)0.5837 (2)0.0446 (6)
C150.2977 (4)0.4418 (2)0.4604 (2)0.0528 (7)
H150.22150.49120.41260.063*
C160.2287 (4)0.4086 (2)0.5548 (3)0.0559 (7)
H160.10510.43480.57190.067*
C170.3447 (4)0.3362 (2)0.6236 (2)0.0543 (7)
H170.29900.31330.68800.065*
C180.5276 (4)0.29665 (19)0.5995 (2)0.0507 (6)
C190.5870 (4)0.3329 (2)0.5033 (2)0.0503 (6)
H190.70920.30760.48380.060*
C200.6584 (6)0.2177 (2)0.6733 (3)0.0765 (9)
H20A0.76270.19230.63440.115*
H20B0.56360.16580.68460.115*
H20C0.73280.24440.74820.115*
N11.0198 (3)0.46793 (16)0.18151 (18)0.0441 (5)
N20.6354 (4)0.73877 (16)1.0040 (2)0.0575 (6)
N30.4733 (3)0.40344 (17)0.43743 (19)0.0485 (5)
O11.1985 (3)0.49838 (15)0.18295 (18)0.0653 (6)
O20.8982 (3)0.42800 (18)0.26438 (16)0.0692 (6)
O30.8656 (3)0.55658 (17)0.32373 (17)0.0701 (6)
O40.5771 (3)0.4654 (2)0.24825 (17)0.0759 (7)
O51.0633 (3)0.68184 (18)0.56883 (18)0.0731 (6)
O60.7576 (3)0.59720 (17)0.51037 (17)0.0586 (5)
O70.7626 (4)0.78320 (19)1.0811 (2)0.0873 (8)
O80.4619 (4)0.70915 (19)1.0137 (2)0.0846 (7)
H3A0.517 (4)0.424 (2)0.3758 (17)0.067 (9)*
H6A0.801 (6)0.584 (3)0.452 (2)0.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0390 (12)0.0435 (13)0.0328 (12)0.0039 (10)0.0126 (10)0.0029 (10)
C20.0321 (11)0.0518 (15)0.0440 (14)0.0038 (11)0.0140 (10)0.0000 (12)
C30.0387 (12)0.0508 (14)0.0366 (12)0.0029 (11)0.0060 (10)0.0072 (11)
C40.0372 (12)0.0384 (12)0.0305 (12)0.0020 (9)0.0109 (9)0.0006 (9)
C50.0374 (13)0.0540 (16)0.0451 (15)0.0107 (11)0.0138 (11)0.0056 (12)
C60.0440 (14)0.0603 (16)0.0348 (13)0.0106 (12)0.0095 (10)0.0125 (12)
C70.0436 (14)0.0656 (17)0.0348 (13)0.0092 (12)0.0152 (11)0.0045 (12)
C80.0481 (13)0.0364 (13)0.0460 (14)0.0004 (11)0.0182 (11)0.0058 (11)
C90.0388 (13)0.0496 (15)0.0589 (16)0.0048 (11)0.0208 (12)0.0046 (12)
C100.0404 (14)0.0505 (15)0.0444 (14)0.0067 (11)0.0073 (11)0.0089 (12)
C110.0361 (12)0.0393 (12)0.0385 (13)0.0011 (10)0.0082 (10)0.0019 (10)
C120.0420 (13)0.0527 (16)0.0577 (16)0.0122 (11)0.0184 (12)0.0070 (13)
C130.0523 (15)0.0526 (15)0.0522 (16)0.0137 (13)0.0113 (12)0.0185 (13)
C140.0430 (14)0.0505 (14)0.0399 (14)0.0006 (11)0.0096 (11)0.0036 (12)
C150.0530 (15)0.0543 (16)0.0514 (16)0.0030 (13)0.0138 (12)0.0071 (13)
C160.0502 (15)0.0646 (18)0.0593 (17)0.0085 (13)0.0258 (13)0.0005 (14)
C170.0615 (17)0.0599 (16)0.0464 (15)0.0071 (13)0.0230 (13)0.0016 (13)
C180.0544 (16)0.0455 (14)0.0484 (15)0.0047 (12)0.0061 (13)0.0015 (12)
C190.0424 (13)0.0543 (15)0.0569 (16)0.0007 (12)0.0177 (12)0.0100 (13)
C200.083 (2)0.0598 (19)0.077 (2)0.0045 (16)0.0011 (18)0.0119 (17)
N10.0487 (12)0.0481 (12)0.0385 (12)0.0018 (10)0.0166 (10)0.0028 (10)
N20.0739 (16)0.0456 (13)0.0613 (15)0.0030 (12)0.0324 (14)0.0110 (12)
N30.0509 (12)0.0561 (13)0.0435 (12)0.0055 (10)0.0215 (10)0.0003 (10)
O10.0639 (12)0.0816 (14)0.0614 (13)0.0203 (11)0.0363 (11)0.0123 (11)
O20.0681 (12)0.1012 (17)0.0398 (10)0.0139 (12)0.0165 (9)0.0199 (11)
O30.0610 (12)0.1101 (18)0.0415 (11)0.0010 (12)0.0172 (10)0.0187 (11)
O40.0703 (13)0.1145 (19)0.0523 (12)0.0193 (13)0.0329 (10)0.0023 (12)
O50.0611 (12)0.0994 (17)0.0672 (13)0.0230 (12)0.0319 (11)0.0106 (12)
O60.0611 (12)0.0730 (12)0.0448 (11)0.0093 (10)0.0192 (9)0.0126 (10)
O70.1097 (18)0.0930 (18)0.0665 (14)0.0288 (15)0.0356 (13)0.0336 (14)
O80.0901 (17)0.0946 (17)0.0888 (17)0.0178 (14)0.0592 (14)0.0217 (14)
Geometric parameters (Å, º) top
C1—C21.372 (3)C12—H120.9300
C1—C61.373 (3)C13—H130.9300
C1—C71.514 (3)C14—O51.201 (3)
C2—C31.381 (3)C14—O61.306 (3)
C2—H20.9300C15—N31.320 (3)
C3—C41.366 (3)C15—C161.369 (4)
C3—H30.9300C15—H150.9300
C4—C51.367 (3)C16—C171.368 (4)
C4—N11.472 (3)C16—H160.9300
C5—C61.383 (3)C17—C181.375 (4)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—C191.370 (4)
C7—O41.236 (3)C18—C201.496 (4)
C7—O31.240 (3)C19—N31.329 (4)
C8—C91.369 (3)C19—H190.9300
C8—C131.372 (3)C20—H20A0.9600
C8—N21.474 (3)C20—H20B0.9600
C9—C101.374 (3)C20—H20C0.9600
C9—H90.9300N1—O21.210 (3)
C10—C111.380 (3)N1—O11.213 (2)
C10—H100.9300N2—O81.208 (3)
C11—C121.375 (3)N2—O71.214 (3)
C11—C141.492 (3)N3—H3A0.88 (2)
C12—C131.377 (4)O6—H6A0.82 (2)
C2—C1—C6119.6 (2)C8—C13—H13120.7
C2—C1—C7120.0 (2)C12—C13—H13120.7
C6—C1—C7120.3 (2)O5—C14—O6124.2 (2)
C1—C2—C3120.4 (2)O5—C14—C11122.8 (2)
C1—C2—H2119.8O6—C14—C11113.0 (2)
C3—C2—H2119.8N3—C15—C16119.6 (3)
C4—C3—C2118.6 (2)N3—C15—H15120.2
C4—C3—H3120.7C16—C15—H15120.2
C2—C3—H3120.7C17—C16—C15118.8 (2)
C3—C4—C5122.6 (2)C17—C16—H16120.6
C3—C4—N1119.1 (2)C15—C16—H16120.6
C5—C4—N1118.38 (19)C16—C17—C18121.3 (2)
C4—C5—C6117.9 (2)C16—C17—H17119.3
C4—C5—H5121.1C18—C17—H17119.3
C6—C5—H5121.1C19—C18—C17116.8 (2)
C1—C6—C5120.9 (2)C19—C18—C20120.6 (3)
C1—C6—H6119.5C17—C18—C20122.6 (3)
C5—C6—H6119.5N3—C19—C18121.2 (2)
O4—C7—O3126.2 (2)N3—C19—H19119.4
O4—C7—C1117.1 (2)C18—C19—H19119.4
O3—C7—C1116.7 (2)C18—C20—H20A109.5
C9—C8—C13122.0 (2)C18—C20—H20B109.5
C9—C8—N2118.6 (2)H20A—C20—H20B109.5
C13—C8—N2119.3 (2)C18—C20—H20C109.5
C8—C9—C10118.6 (2)H20A—C20—H20C109.5
C8—C9—H9120.7H20B—C20—H20C109.5
C10—C9—H9120.7O2—N1—O1123.6 (2)
C9—C10—C11120.8 (2)O2—N1—C4118.11 (19)
C9—C10—H10119.6O1—N1—C4118.2 (2)
C11—C10—H10119.6O8—N2—O7123.3 (2)
C12—C11—C10119.2 (2)O8—N2—C8118.7 (2)
C12—C11—C14118.7 (2)O7—N2—C8118.0 (2)
C10—C11—C14122.0 (2)C15—N3—C19122.2 (2)
C11—C12—C13120.7 (2)C15—N3—H3A119.7 (19)
C11—C12—H12119.6C19—N3—H3A118.2 (19)
C13—C12—H12119.6C14—O6—H6A112 (3)
C8—C13—C12118.6 (2)
C6—C1—C2—C30.2 (4)N2—C8—C13—C12177.4 (2)
C7—C1—C2—C3178.2 (2)C11—C12—C13—C81.2 (4)
C1—C2—C3—C40.3 (4)C12—C11—C14—O52.0 (4)
C2—C3—C4—C50.8 (4)C10—C11—C14—O5179.5 (3)
C2—C3—C4—N1178.5 (2)C12—C11—C14—O6177.2 (2)
C3—C4—C5—C60.7 (4)C10—C11—C14—O61.3 (3)
N1—C4—C5—C6178.7 (2)N3—C15—C16—C170.2 (4)
C2—C1—C6—C50.4 (4)C15—C16—C17—C180.1 (4)
C7—C1—C6—C5178.1 (2)C16—C17—C18—C190.3 (4)
C4—C5—C6—C10.1 (4)C16—C17—C18—C20179.8 (3)
C2—C1—C7—O45.9 (4)C17—C18—C19—N30.5 (4)
C6—C1—C7—O4172.5 (3)C20—C18—C19—N3179.5 (2)
C2—C1—C7—O3174.2 (2)C3—C4—N1—O21.3 (3)
C6—C1—C7—O37.4 (4)C5—C4—N1—O2179.4 (2)
C13—C8—C9—C100.9 (4)C3—C4—N1—O1178.8 (2)
N2—C8—C9—C10176.9 (2)C5—C4—N1—O10.6 (3)
C8—C9—C10—C110.2 (4)C9—C8—N2—O83.3 (4)
C9—C10—C11—C121.8 (4)C13—C8—N2—O8178.9 (3)
C9—C10—C11—C14176.7 (2)C9—C8—N2—O7177.2 (3)
C10—C11—C12—C132.3 (4)C13—C8—N2—O70.6 (4)
C14—C11—C12—C13176.2 (2)C16—C15—N3—C190.0 (4)
C9—C8—C13—C120.4 (4)C18—C19—N3—C150.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the ring (C1-C6)
D—H···AD—HH···AD···AD—H···A
N3—H3A···O40.88 (2)1.73 (2)2.612 (3)175 (3)
O6—H6A···O30.83 (2)1.70 (2)2.518 (2)175 (4)
C9—H9···O1i0.932.473.271 (3)144
C15—H15···O3ii0.932.413.218 (3)145
C16—H16···O2i0.932.593.353 (3)140
C19—H19···O5iii0.932.423.293 (3)156
C13—H13···Cg2iv0.932.833.564 (3)137
Symmetry codes: (i) x1, y, z+1; (ii) x1, y, z; (iii) x+2, y1/2, z+1; (iv) x+2, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAbdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Mothy, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637–647.  Web of Science PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGirgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466–4476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2255–o2256.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878–o1879.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpanka, C., Glatthar, R., Desrayaud, S., Fendt, M., Orain, D., Troxler, T. & Vranesic, I. (2010). Bioorg. Med. Chem. Lett. 20, 184–188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds