organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Chloro-1-methyl­indoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181., Ecole Nationale Supérieure de Chimie de Lille, France, and dDépartement de Chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: haoudi_amal@yahoo.fr

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 25 May 2016; accepted 6 June 2016; online 10 June 2016)

The title mol­ecule, C9H6ClNO2, is almost planar, with an r.m.s. deviation of the fitted non-hydrogen atoms of 0.0922 (19) Å. In the crystal, mol­ecules are connected through methyl-C—H⋯O(carbon­yl) inter­actions into supra­molecular helical chains along the b axis. Inter-chain ππ inter­actions lead to layers parallel to the ab plane [centroid–centroid distances = 3.4861 (13) to 3.9767 (12) Å]. The crystal studied was a non-merohedral twin with a ratio of the twin components of 0.8612 (12): 0.1388 (12).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

5-Chloro-1H-indole-2,3-dione is a derivative of isatin (1H-Indole-2,3-dione) which has several inter­esting activities such as anti-tubercular (Aboul-Fadl et al., 2010[Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578-4586.]), cytotoxicity (Subba Reddy et al., 2012[Reddy, B. V. S., Rajeswari, N., Sarangapani, M., Prashanthi, Y., Ganji, R. J. & Addlagatta, A. (2012). Bioorg. Med. Chem. Lett. 22, 2460-2463.]) anti-inflammatory, (Anisetti et al.; 2012[Anisetti, R. & Srinivas Reddy, M. (2012). J. Sulfur Chem. 33, 363-372.]) anti-convulsant (Eggadi et al., 2013[Eggadi, V., Kulandaivelu, U., Sharvanabhava, B. S. & Jupally, V. R. (2013). Am. J. Pharm. Sci, 1, 42-46.]) anxiolytic (Silva et al., 2013[Silva, B. V. (2013). J. Braz. Chem. Soc. 24, 707-720.]) and anti-depressant (Radhika et al., 2012[Radhika, C., Venkatesham, A. & Sarangapani, M. (2012). Med. Chem. Res. 21, 3509-3513.]).

The title compound (Fig. 1[link]) was synthesized by the alkyl­ation method (Kharbach et al., 2015[Kharbach, Y., Haoudi, A., Capet, F., Mazzah, A. & El Ammari, L. (2015). Acta Cryst. E71, o1024-o1025.]) under phase-transfer catalysis conditions (Bouhfid et al., 2005[Bouhfid, R., Joly, N., Massoui, M., Cecchelli, R., Lequart, V., Martin, P. & Essassi, E. M. (2005). Heterocycles, 65, 2949-2955.]). The crystal studied was a non-merohedral twin with a ratio of the twin components of 0.8612 (12): 0.1388 (12).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

The title mol­ecule, C9H6ClNO2, is almost planar, with an r.m.s. deviation of 0.0922 (19) Å. In the crystal, mol­ecules are connected through methyl--carbonyl C—H⋯O inter­actions (Table 1[link]) into infinite chains along the b axis. The packing (Fig. 2[link]) is also influenced by inter-chain ππ inter­actions, which form layers parallel to the ab plane [centroid–centroid distances = 3.4861 (13) to 3.9767 (12) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9C⋯O2i 0.96 2.52 3.435 (3) 159
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal structure of the title compound, viewed along the a axis, showing chains parallel to the b axis linked by C—H⋯O hydrogen bonds (dashed lines). For the sake of clarity, H atoms not involved in the hydrogen bonds have been omitted.

Synthesis and crystallization

To a solution of 5-chloro-1H-indole-2,3-dione (0.4 g, 2.20 mmol) in DMF (25 ml), were added potassium carbonate (0.5 g, 3.3 mmol), tetra-n-butyl­ammonium fluoride (0.1 g, 0,3 mmol) and methyl iodide (0.13 ml, 2.42 mmol). The reaction mixture was stirred at ambient temperature for 48 h. The precipitate was filtered and processed yielding the title compound in a good yield of 89% in the form of red crystals (m.p. 361 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. At the final stage of refinement, an analysis of the data using the TwinRotMat routine in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) revealed a minor twin (twofold axis around c*). The twin matrix is (−0.999 0 0.002, 0 − 1 0, 1 0 0.999).

Table 2
Experimental details

Crystal data
Chemical formula C9H6ClNO2
Mr 195.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 300
a, b, c (Å) 3.9766 (4), 11.9503 (13), 17.947 (2)
β (°) 96.163 (3)
V3) 847.94 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.29 × 0.11 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA])
Tmin, Tmax 0.697, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12975, 2080, 1705
Rint 0.027
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.05
No. of reflections 2080
No. of parameters 120
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]), XT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: XT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

5-Chloro-1-methylindoline-2,3-dione top
Crystal data top
C9H6ClNO2F(000) = 400
Mr = 195.60Dx = 1.532 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.9766 (4) ÅCell parameters from 4975 reflections
b = 11.9503 (13) Åθ = 2.9–25.6°
c = 17.947 (2) ŵ = 0.41 mm1
β = 96.163 (3)°T = 300 K
V = 847.94 (16) Å3Prism, red
Z = 40.29 × 0.11 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
1705 reflections with I > 2σ(I)
φ and ω scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 28.3°, θmin = 1.7°
Tmin = 0.697, Tmax = 0.746h = 55
12975 measured reflectionsk = 1515
2080 independent reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.264P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2080 reflectionsΔρmax = 0.25 e Å3
120 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19046 (16)0.83313 (5)0.57429 (3)0.06020 (19)
N10.7031 (5)0.74151 (13)0.28515 (9)0.0445 (4)
O20.9524 (5)0.58155 (13)0.24499 (10)0.0701 (5)
C10.5640 (5)0.77475 (14)0.35050 (10)0.0384 (4)
O10.7708 (6)0.49696 (13)0.38997 (10)0.0740 (5)
C20.4421 (5)0.87931 (15)0.36668 (11)0.0436 (4)
H20.43930.93770.33240.052*
C60.5649 (5)0.68680 (14)0.40190 (11)0.0417 (4)
C30.3238 (5)0.89379 (16)0.43616 (11)0.0449 (5)
H30.23880.96310.44850.054*
C40.3301 (5)0.80689 (16)0.48740 (11)0.0439 (4)
C80.8099 (6)0.63366 (16)0.29043 (12)0.0509 (5)
C50.4483 (5)0.70138 (16)0.47102 (12)0.0459 (5)
H50.44900.64290.50520.055*
C90.7425 (7)0.81520 (18)0.22215 (12)0.0552 (5)
H9A0.52380.83900.20000.083*
H9B0.85620.77580.18550.083*
H9C0.87360.87940.23940.083*
C70.7167 (6)0.59026 (15)0.36734 (13)0.0507 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0628 (4)0.0650 (4)0.0544 (3)0.0064 (3)0.0138 (3)0.0002 (2)
N10.0503 (10)0.0335 (7)0.0492 (9)0.0035 (7)0.0036 (8)0.0052 (7)
O20.0883 (13)0.0505 (9)0.0740 (10)0.0077 (9)0.0199 (11)0.0168 (8)
C10.0363 (9)0.0325 (8)0.0448 (9)0.0052 (7)0.0027 (8)0.0043 (7)
O10.1058 (15)0.0303 (7)0.0867 (12)0.0099 (8)0.0146 (12)0.0037 (7)
C20.0494 (11)0.0317 (8)0.0475 (10)0.0028 (8)0.0041 (9)0.0022 (8)
C60.0418 (10)0.0287 (8)0.0532 (11)0.0032 (7)0.0013 (9)0.0009 (7)
C30.0441 (10)0.0355 (9)0.0538 (11)0.0067 (8)0.0014 (10)0.0053 (8)
C40.0389 (10)0.0451 (10)0.0471 (10)0.0009 (8)0.0021 (9)0.0017 (8)
C80.0550 (12)0.0362 (9)0.0605 (12)0.0035 (9)0.0019 (11)0.0122 (9)
C50.0476 (11)0.0358 (9)0.0532 (12)0.0024 (8)0.0005 (10)0.0064 (8)
C90.0688 (15)0.0495 (11)0.0478 (11)0.0051 (11)0.0090 (11)0.0000 (9)
C70.0577 (13)0.0313 (9)0.0619 (12)0.0023 (9)0.0004 (11)0.0037 (9)
Geometric parameters (Å, º) top
Cl1—C41.739 (2)C6—C51.381 (3)
N1—C11.407 (3)C6—C71.470 (3)
N1—C81.357 (3)C3—H30.9300
N1—C91.455 (3)C3—C41.386 (3)
O2—C81.214 (3)C4—C51.388 (3)
C1—C21.382 (3)C8—C71.556 (3)
C1—C61.398 (3)C5—H50.9300
O1—C71.198 (2)C9—H9A0.9600
C2—H20.9300C9—H9B0.9600
C2—C31.390 (3)C9—H9C0.9600
C1—N1—C9124.18 (16)C5—C4—Cl1120.11 (16)
C8—N1—C1110.98 (17)N1—C8—C7106.02 (17)
C8—N1—C9124.77 (18)O2—C8—N1127.3 (2)
C2—C1—N1127.50 (17)O2—C8—C7126.71 (19)
C2—C1—C6121.13 (18)C6—C5—C4117.31 (18)
C6—C1—N1111.37 (16)C6—C5—H5121.3
C1—C2—H2121.3C4—C5—H5121.3
C1—C2—C3117.46 (17)N1—C9—H9A109.5
C3—C2—H2121.3N1—C9—H9B109.5
C1—C6—C7106.48 (17)N1—C9—H9C109.5
C5—C6—C1121.36 (17)H9A—C9—H9B109.5
C5—C6—C7132.12 (18)H9A—C9—H9C109.5
C2—C3—H3119.4H9B—C9—H9C109.5
C4—C3—C2121.22 (17)O1—C7—C6130.9 (2)
C4—C3—H3119.4O1—C7—C8124.0 (2)
C3—C4—Cl1118.38 (15)C6—C7—C8105.09 (15)
C3—C4—C5121.51 (19)
Cl1—C4—C5—C6178.13 (16)C2—C1—C6—C7178.79 (18)
N1—C1—C2—C3178.3 (2)C2—C3—C4—Cl1177.88 (16)
N1—C1—C6—C5178.22 (19)C2—C3—C4—C51.3 (3)
N1—C1—C6—C70.3 (2)C6—C1—C2—C30.6 (3)
N1—C8—C7—O1179.0 (2)C3—C4—C5—C61.0 (3)
N1—C8—C7—C62.1 (2)C8—N1—C1—C2177.2 (2)
O2—C8—C7—O11.8 (4)C8—N1—C1—C61.7 (2)
O2—C8—C7—C6177.2 (2)C5—C6—C7—O12.3 (4)
C1—N1—C8—O2177.0 (2)C5—C6—C7—C8176.6 (2)
C1—N1—C8—C72.3 (2)C9—N1—C1—C20.2 (3)
C1—C2—C3—C40.4 (3)C9—N1—C1—C6178.75 (19)
C1—C6—C5—C40.0 (3)C9—N1—C8—O20.0 (4)
C1—C6—C7—O1179.9 (3)C9—N1—C8—C7179.3 (2)
C1—C6—C7—C81.1 (2)C7—C6—C5—C4177.4 (2)
C2—C1—C6—C50.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···O2i0.962.523.435 (3)159
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

References

First citationAboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586.  Web of Science CAS PubMed Google Scholar
First citationAnisetti, R. & Srinivas Reddy, M. (2012). J. Sulfur Chem. 33, 363–372.  Web of Science CrossRef CAS Google Scholar
First citationBouhfid, R., Joly, N., Massoui, M., Cecchelli, R., Lequart, V., Martin, P. & Essassi, E. M. (2005). Heterocycles, 65, 2949–2955.  CAS Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationEggadi, V., Kulandaivelu, U., Sharvanabhava, B. S. & Jupally, V. R. (2013). Am. J. Pharm. Sci, 1, 42–46.  CrossRef Google Scholar
First citationKharbach, Y., Haoudi, A., Capet, F., Mazzah, A. & El Ammari, L. (2015). Acta Cryst. E71, o1024–o1025.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRadhika, C., Venkatesham, A. & Sarangapani, M. (2012). Med. Chem. Res. 21, 3509–3513.  Web of Science CrossRef CAS Google Scholar
First citationReddy, B. V. S., Rajeswari, N., Sarangapani, M., Prashanthi, Y., Ganji, R. J. & Addlagatta, A. (2012). Bioorg. Med. Chem. Lett. 22, 2460–2463.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, B. V. (2013). J. Braz. Chem. Soc. 24, 707–720.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds