organic compounds
5-Chloro-1-methylindoline-2,3-dione
aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181., Ecole Nationale Supérieure de Chimie de Lille, France, and dDépartement de Chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: haoudi_amal@yahoo.fr
The title molecule, C9H6ClNO2, is almost planar, with an r.m.s. deviation of the fitted non-hydrogen atoms of 0.0922 (19) Å. In the crystal, molecules are connected through methyl-C—H⋯O(carbonyl) interactions into supramolecular helical chains along the b axis. Inter-chain π–π interactions lead to layers parallel to the ab plane [centroid–centroid distances = 3.4861 (13) to 3.9767 (12) Å]. The crystal studied was a non-merohedral twin with a ratio of the twin components of 0.8612 (12): 0.1388 (12).
Keywords: crystal structure; indoline; C—H⋯O interactions.
CCDC reference: 1483751
Structure description
5-Chloro-1H-indole-2,3-dione is a derivative of isatin (1H-Indole-2,3-dione) which has several interesting activities such as anti-tubercular (Aboul-Fadl et al., 2010), cytotoxicity (Subba Reddy et al., 2012) anti-inflammatory, (Anisetti et al.; 2012) anti-convulsant (Eggadi et al., 2013) anxiolytic (Silva et al., 2013) and anti-depressant (Radhika et al., 2012).
The title compound (Fig. 1) was synthesized by the alkylation method (Kharbach et al., 2015) under conditions (Bouhfid et al., 2005). The crystal studied was a non-merohedral twin with a ratio of the twin components of 0.8612 (12): 0.1388 (12).
The title molecule, C9H6ClNO2, is almost planar, with an r.m.s. deviation of 0.0922 (19) Å. In the crystal, molecules are connected through methyl--carbonyl C—H⋯O interactions (Table 1) into infinite chains along the b axis. The packing (Fig. 2) is also influenced by inter-chain π–π interactions, which form layers parallel to the ab plane [centroid–centroid distances = 3.4861 (13) to 3.9767 (12) Å].
Synthesis and crystallization
To a solution of 5-chloro-1H-indole-2,3-dione (0.4 g, 2.20 mmol) in DMF (25 ml), were added potassium carbonate (0.5 g, 3.3 mmol), tetra-n-butylammonium fluoride (0.1 g, 0,3 mmol) and methyl iodide (0.13 ml, 2.42 mmol). The reaction mixture was stirred at ambient temperature for 48 h. The precipitate was filtered and processed yielding the title compound in a good yield of 89% in the form of red crystals (m.p. 361 K).
Refinement
Crystal data, data collection and structure . At the final stage of an analysis of the data using the TwinRotMat routine in PLATON (Spek, 2009) revealed a minor twin (twofold axis around c*). The twin matrix is (−0.999 0 0.002, 0 − 1 0, 1 0 0.999).
details are summarized in Table 2Structural data
CCDC reference: 1483751
10.1107/S2414314616009135/tk4016sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616009135/tk4016Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616009135/tk4016Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: XT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C9H6ClNO2 | F(000) = 400 |
Mr = 195.60 | Dx = 1.532 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 3.9766 (4) Å | Cell parameters from 4975 reflections |
b = 11.9503 (13) Å | θ = 2.9–25.6° |
c = 17.947 (2) Å | µ = 0.41 mm−1 |
β = 96.163 (3)° | T = 300 K |
V = 847.94 (16) Å3 | Prism, red |
Z = 4 | 0.29 × 0.11 × 0.11 mm |
Bruker APEXII CCD diffractometer | 1705 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.027 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | θmax = 28.3°, θmin = 1.7° |
Tmin = 0.697, Tmax = 0.746 | h = −5→5 |
12975 measured reflections | k = −15→15 |
2080 independent reflections | l = −22→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0449P)2 + 0.264P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2080 reflections | Δρmax = 0.25 e Å−3 |
120 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.19046 (16) | 0.83313 (5) | 0.57429 (3) | 0.06020 (19) | |
N1 | 0.7031 (5) | 0.74151 (13) | 0.28515 (9) | 0.0445 (4) | |
O2 | 0.9524 (5) | 0.58155 (13) | 0.24499 (10) | 0.0701 (5) | |
C1 | 0.5640 (5) | 0.77475 (14) | 0.35050 (10) | 0.0384 (4) | |
O1 | 0.7708 (6) | 0.49696 (13) | 0.38997 (10) | 0.0740 (5) | |
C2 | 0.4421 (5) | 0.87931 (15) | 0.36668 (11) | 0.0436 (4) | |
H2 | 0.4393 | 0.9377 | 0.3324 | 0.052* | |
C6 | 0.5649 (5) | 0.68680 (14) | 0.40190 (11) | 0.0417 (4) | |
C3 | 0.3238 (5) | 0.89379 (16) | 0.43616 (11) | 0.0449 (5) | |
H3 | 0.2388 | 0.9631 | 0.4485 | 0.054* | |
C4 | 0.3301 (5) | 0.80689 (16) | 0.48740 (11) | 0.0439 (4) | |
C8 | 0.8099 (6) | 0.63366 (16) | 0.29043 (12) | 0.0509 (5) | |
C5 | 0.4483 (5) | 0.70138 (16) | 0.47102 (12) | 0.0459 (5) | |
H5 | 0.4490 | 0.6429 | 0.5052 | 0.055* | |
C9 | 0.7425 (7) | 0.81520 (18) | 0.22215 (12) | 0.0552 (5) | |
H9A | 0.5238 | 0.8390 | 0.2000 | 0.083* | |
H9B | 0.8562 | 0.7758 | 0.1855 | 0.083* | |
H9C | 0.8736 | 0.8794 | 0.2394 | 0.083* | |
C7 | 0.7167 (6) | 0.59026 (15) | 0.36734 (13) | 0.0507 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0628 (4) | 0.0650 (4) | 0.0544 (3) | 0.0064 (3) | 0.0138 (3) | −0.0002 (2) |
N1 | 0.0503 (10) | 0.0335 (7) | 0.0492 (9) | −0.0035 (7) | 0.0036 (8) | −0.0052 (7) |
O2 | 0.0883 (13) | 0.0505 (9) | 0.0740 (10) | 0.0077 (9) | 0.0199 (11) | −0.0168 (8) |
C1 | 0.0363 (9) | 0.0325 (8) | 0.0448 (9) | −0.0052 (7) | −0.0027 (8) | −0.0043 (7) |
O1 | 0.1058 (15) | 0.0303 (7) | 0.0867 (12) | 0.0099 (8) | 0.0146 (12) | 0.0037 (7) |
C2 | 0.0494 (11) | 0.0317 (8) | 0.0475 (10) | 0.0028 (8) | −0.0041 (9) | 0.0022 (8) |
C6 | 0.0418 (10) | 0.0287 (8) | 0.0532 (11) | −0.0032 (7) | −0.0013 (9) | −0.0009 (7) |
C3 | 0.0441 (10) | 0.0355 (9) | 0.0538 (11) | 0.0067 (8) | −0.0014 (10) | −0.0053 (8) |
C4 | 0.0389 (10) | 0.0451 (10) | 0.0471 (10) | −0.0009 (8) | 0.0021 (9) | −0.0017 (8) |
C8 | 0.0550 (12) | 0.0362 (9) | 0.0605 (12) | −0.0035 (9) | 0.0019 (11) | −0.0122 (9) |
C5 | 0.0476 (11) | 0.0358 (9) | 0.0532 (12) | −0.0024 (8) | 0.0005 (10) | 0.0064 (8) |
C9 | 0.0688 (15) | 0.0495 (11) | 0.0478 (11) | −0.0051 (11) | 0.0090 (11) | 0.0000 (9) |
C7 | 0.0577 (13) | 0.0313 (9) | 0.0619 (12) | −0.0023 (9) | 0.0004 (11) | −0.0037 (9) |
Cl1—C4 | 1.739 (2) | C6—C5 | 1.381 (3) |
N1—C1 | 1.407 (3) | C6—C7 | 1.470 (3) |
N1—C8 | 1.357 (3) | C3—H3 | 0.9300 |
N1—C9 | 1.455 (3) | C3—C4 | 1.386 (3) |
O2—C8 | 1.214 (3) | C4—C5 | 1.388 (3) |
C1—C2 | 1.382 (3) | C8—C7 | 1.556 (3) |
C1—C6 | 1.398 (3) | C5—H5 | 0.9300 |
O1—C7 | 1.198 (2) | C9—H9A | 0.9600 |
C2—H2 | 0.9300 | C9—H9B | 0.9600 |
C2—C3 | 1.390 (3) | C9—H9C | 0.9600 |
C1—N1—C9 | 124.18 (16) | C5—C4—Cl1 | 120.11 (16) |
C8—N1—C1 | 110.98 (17) | N1—C8—C7 | 106.02 (17) |
C8—N1—C9 | 124.77 (18) | O2—C8—N1 | 127.3 (2) |
C2—C1—N1 | 127.50 (17) | O2—C8—C7 | 126.71 (19) |
C2—C1—C6 | 121.13 (18) | C6—C5—C4 | 117.31 (18) |
C6—C1—N1 | 111.37 (16) | C6—C5—H5 | 121.3 |
C1—C2—H2 | 121.3 | C4—C5—H5 | 121.3 |
C1—C2—C3 | 117.46 (17) | N1—C9—H9A | 109.5 |
C3—C2—H2 | 121.3 | N1—C9—H9B | 109.5 |
C1—C6—C7 | 106.48 (17) | N1—C9—H9C | 109.5 |
C5—C6—C1 | 121.36 (17) | H9A—C9—H9B | 109.5 |
C5—C6—C7 | 132.12 (18) | H9A—C9—H9C | 109.5 |
C2—C3—H3 | 119.4 | H9B—C9—H9C | 109.5 |
C4—C3—C2 | 121.22 (17) | O1—C7—C6 | 130.9 (2) |
C4—C3—H3 | 119.4 | O1—C7—C8 | 124.0 (2) |
C3—C4—Cl1 | 118.38 (15) | C6—C7—C8 | 105.09 (15) |
C3—C4—C5 | 121.51 (19) | ||
Cl1—C4—C5—C6 | −178.13 (16) | C2—C1—C6—C7 | −178.79 (18) |
N1—C1—C2—C3 | −178.3 (2) | C2—C3—C4—Cl1 | 177.88 (16) |
N1—C1—C6—C5 | 178.22 (19) | C2—C3—C4—C5 | −1.3 (3) |
N1—C1—C6—C7 | 0.3 (2) | C6—C1—C2—C3 | 0.6 (3) |
N1—C8—C7—O1 | 179.0 (2) | C3—C4—C5—C6 | 1.0 (3) |
N1—C8—C7—C6 | −2.1 (2) | C8—N1—C1—C2 | 177.2 (2) |
O2—C8—C7—O1 | −1.8 (4) | C8—N1—C1—C6 | −1.7 (2) |
O2—C8—C7—C6 | 177.2 (2) | C5—C6—C7—O1 | 2.3 (4) |
C1—N1—C8—O2 | −177.0 (2) | C5—C6—C7—C8 | −176.6 (2) |
C1—N1—C8—C7 | 2.3 (2) | C9—N1—C1—C2 | 0.2 (3) |
C1—C2—C3—C4 | 0.4 (3) | C9—N1—C1—C6 | −178.75 (19) |
C1—C6—C5—C4 | 0.0 (3) | C9—N1—C8—O2 | 0.0 (4) |
C1—C6—C7—O1 | 179.9 (3) | C9—N1—C8—C7 | 179.3 (2) |
C1—C6—C7—C8 | 1.1 (2) | C7—C6—C5—C4 | 177.4 (2) |
C2—C1—C6—C5 | −0.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9C···O2i | 0.96 | 2.52 | 3.435 (3) | 159 |
Symmetry code: (i) −x+2, y+1/2, −z+1/2. |
References
Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586. Web of Science CAS PubMed Google Scholar
Anisetti, R. & Srinivas Reddy, M. (2012). J. Sulfur Chem. 33, 363–372. Web of Science CrossRef CAS Google Scholar
Bouhfid, R., Joly, N., Massoui, M., Cecchelli, R., Lequart, V., Martin, P. & Essassi, E. M. (2005). Heterocycles, 65, 2949–2955. CAS Google Scholar
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA Google Scholar
Eggadi, V., Kulandaivelu, U., Sharvanabhava, B. S. & Jupally, V. R. (2013). Am. J. Pharm. Sci, 1, 42–46. CrossRef Google Scholar
Kharbach, Y., Haoudi, A., Capet, F., Mazzah, A. & El Ammari, L. (2015). Acta Cryst. E71, o1024–o1025. Web of Science CSD CrossRef IUCr Journals Google Scholar
Radhika, C., Venkatesham, A. & Sarangapani, M. (2012). Med. Chem. Res. 21, 3509–3513. Web of Science CrossRef CAS Google Scholar
Reddy, B. V. S., Rajeswari, N., Sarangapani, M., Prashanthi, Y., Ganji, R. J. & Addlagatta, A. (2012). Bioorg. Med. Chem. Lett. 22, 2460–2463. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, B. V. (2013). J. Braz. Chem. Soc. 24, 707–720. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.