organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Acetamido-1H-pyrazole-4-carboxamide monohydrate

aLaboratoire de Chemie Bio Organique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco, cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: yramli76@yahoo.fr

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 8 May 2016; accepted 11 June 2016; online 17 June 2016)

There are two independent mol­ecules of the title carboxamide compound, C6H8N4O2·H2O, as well as two independent water mol­ecules in the asymmetric unit. The two independent carboxamide mol­ecules differ primarily in the relative orientations of the peripheral methyl and amino groups. Intra­molecular N—H⋯O hydrogen bonds assist in determining the orientations of the acetamido substituents. The three-dimensional crystal packing is directed by a large network of O—H⋯O, N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds that contain the pyrazole moiety are known to exhibit a wide range of biological properties (Tantawy et al., 2012[Tantawy, A. S., Nasr, M. N. A., El-Sayed, M. M. A. & Tawfik, S. S. (2012). Med. Chem. Res. 21, 4139-4149.]). As a continuation of our research devoted to the development of carboxamide derivatives of pyrazole (Ramli et al., 2013[Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320-o1321.]; Karrouchi et al., 2015[Karrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890-o891.]), we prepared the title compound and characterized it by X-ray diffraction. There are two independent mol­ecules of the carboxamide compound as well as two independent water mol­ecules in the asymmetric unit (Fig. 1[link]). The former differ primarily in the orientations of the peripheral methyl and amino groups and their conformations are mainly determined by a pair of intra­molecular N—H⋯O hydrogen bonds in each. Inter­molecular O—H⋯O, N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds which include those with the lattice water form sheets which are tied to one another by hydrogen bonding with the lattice water (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.90 (2) 2.07 (2) 2.7514 (14) 131.9 (17)
N2—H2A⋯O2 0.90 (2) 2.09 (2) 2.6441 (14) 118.6 (16)
N3—H3A⋯O1 0.883 (19) 2.226 (18) 2.8307 (14) 125.4 (15)
N4—H4A⋯O5 0.897 (19) 2.10 (2) 2.9919 (15) 173.9 (17)
N4—H4B⋯O6ii 0.90 (2) 2.12 (2) 2.9893 (15) 163.2 (17)
C1—H1⋯O6ii 0.95 2.51 3.3791 (16) 153
N6—H6A⋯O3iii 0.89 (2) 2.01 (2) 2.7112 (14) 135.8 (18)
N6—H6A⋯O4 0.89 (2) 2.14 (2) 2.6558 (15) 116.4 (16)
N7—H7A⋯O3 0.887 (18) 2.204 (18) 2.8325 (14) 127.4 (15)
N8—H8A⋯O6 0.914 (19) 2.13 (2) 3.0338 (15) 169.7 (17)
N8—H8B⋯O5iv 0.907 (18) 2.052 (19) 2.9354 (15) 164.5 (16)
C7—H7⋯O5iv 0.95 2.63 3.4683 (17) 147
C11—H11B⋯N5v 0.98 2.44 3.3337 (17) 152
O5—H5D⋯O2vi 0.93 (2) 1.87 (2) 2.7658 (14) 161.1 (19)
O5—H5E⋯O1vii 0.87 (2) 1.97 (2) 2.8269 (15) 168 (2)
O6—H6B⋯N1vi 0.85 (2) 2.13 (2) 2.9448 (16) 162.5 (18)
O6—H6C⋯O4v 0.93 (2) 1.83 (2) 2.7406 (14) 165.0 (18)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x+1, -y, -z.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-labelling scheme and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Packing viewed along the b axis with O—H⋯O and N—H⋯O hydrogen bonds when shown, indicated as red and blue dotted lines, respectively.

Synthesis and crystallization

5-Amino-1H-pyrazole-4-carboxamide (0.669 g, 3.69 mmol) was stirred in refluxing glacial acetic acid for 1 h. The mixture was cooled to room temperature and the resulting solid was filtered off and dried to obtain the acetyl­ated product (yield; 80%; m.p. = 387–389 K). Crystals suitable for X-ray analysis were obtained by recrystallization from wet ethanol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H8N4O2·H2O
Mr 186.18
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 9.7953 (3), 12.4179 (3), 14.4833 (4)
β (°) 107.490 (1)
V3) 1680.26 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.02
Crystal size (mm) 0.18 × 0.11 × 0.11
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.81, 0.90
No. of measured, independent and observed [I > 2σ(I)] reflections 13029, 3358, 2970
Rint 0.030
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.07
No. of reflections 3358
No. of parameters 285
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.32
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5-Acetamido-1H-pyrazole-4-carboxamide monohydrate top
Crystal data top
C6H8N4O2·H2OF(000) = 784
Mr = 186.18Dx = 1.472 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 9.7953 (3) ÅCell parameters from 9957 reflections
b = 12.4179 (3) Åθ = 3.2–74.5°
c = 14.4833 (4) ŵ = 1.02 mm1
β = 107.490 (1)°T = 150 K
V = 1680.26 (8) Å3Block, colourless
Z = 80.18 × 0.11 × 0.11 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3358 independent reflections
Radiation source: INCOATEC IµS micro–focus source2970 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 4.8°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1415
Tmin = 0.81, Tmax = 0.90l = 1618
13029 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.055P)2 + 0.420P]
where P = (Fo2 + 2Fc2)/3
3358 reflections(Δ/σ)max < 0.001
285 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64084 (10)0.12975 (7)0.15757 (7)0.0275 (2)
O21.01723 (10)0.38984 (7)0.35365 (7)0.0275 (2)
N10.64268 (12)0.49783 (9)0.18328 (9)0.0243 (2)
N20.76322 (12)0.44563 (9)0.23727 (8)0.0216 (2)
H2A0.839 (2)0.4803 (16)0.2766 (16)0.047 (5)*
N30.85744 (12)0.26580 (9)0.27281 (8)0.0216 (2)
H3A0.8390 (19)0.1967 (15)0.2611 (13)0.036 (5)*
N40.43236 (12)0.20207 (9)0.06553 (9)0.0253 (3)
H4A0.3977 (19)0.1368 (16)0.0443 (13)0.038 (5)*
H4B0.379 (2)0.2609 (16)0.0446 (14)0.039 (5)*
C10.55571 (13)0.42000 (10)0.13782 (10)0.0220 (3)
H10.46270.43200.09450.026*
C20.61742 (13)0.31744 (10)0.16125 (9)0.0194 (3)
C30.75180 (13)0.33861 (10)0.22646 (9)0.0190 (3)
C40.98718 (13)0.29469 (10)0.33478 (9)0.0216 (3)
C51.08922 (14)0.20491 (11)0.37679 (11)0.0281 (3)
H5A1.05760.13910.33900.042*
H5B1.09160.19260.44410.042*
H5C1.18520.22430.37470.042*
C60.56270 (13)0.20997 (10)0.12835 (9)0.0201 (3)
O30.40206 (10)0.25721 (7)0.29665 (7)0.0273 (2)
O40.00312 (10)0.51118 (7)0.11825 (7)0.0280 (2)
N50.33747 (12)0.61884 (9)0.33187 (9)0.0256 (3)
N60.23058 (12)0.56693 (9)0.26354 (8)0.0229 (2)
H6A0.154 (2)0.6021 (16)0.2283 (15)0.048 (5)*
N70.17347 (11)0.39040 (9)0.19132 (8)0.0206 (2)
H7A0.2026 (19)0.3224 (15)0.1970 (13)0.035 (5)*
N80.59719 (12)0.33310 (9)0.40152 (9)0.0237 (2)
H8A0.642 (2)0.2676 (16)0.4097 (13)0.040 (5)*
H8B0.6437 (19)0.3930 (15)0.4305 (13)0.032 (4)*
C70.43460 (14)0.54373 (10)0.36760 (10)0.0229 (3)
H70.52210.55640.41700.028*
C80.39327 (13)0.44268 (10)0.32381 (9)0.0196 (3)
C90.26034 (13)0.46235 (10)0.25628 (9)0.0193 (3)
C100.04738 (13)0.41788 (10)0.12501 (9)0.0212 (3)
C110.03388 (14)0.32910 (11)0.06167 (10)0.0258 (3)
H11A0.12050.31270.07960.039*
H11B0.02640.26470.07030.039*
H11C0.06070.35200.00620.039*
C120.46470 (13)0.33801 (10)0.33990 (9)0.0197 (3)
O50.29513 (11)0.00815 (8)0.01083 (8)0.0294 (2)
H5D0.340 (2)0.0463 (17)0.0455 (17)0.051 (6)*
H5E0.322 (2)0.0375 (18)0.0572 (17)0.057 (6)*
O60.75030 (11)0.11930 (8)0.45538 (8)0.0289 (2)
H6B0.790 (2)0.0974 (16)0.4142 (15)0.042 (5)*
H6C0.667 (2)0.0781 (16)0.4413 (14)0.047 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0272 (5)0.0164 (4)0.0306 (5)0.0028 (4)0.0038 (4)0.0002 (4)
O20.0243 (5)0.0243 (5)0.0283 (5)0.0054 (4)0.0005 (4)0.0008 (4)
N10.0216 (5)0.0179 (5)0.0291 (6)0.0007 (4)0.0010 (5)0.0015 (4)
N20.0195 (5)0.0167 (5)0.0249 (6)0.0016 (4)0.0008 (5)0.0001 (4)
N30.0197 (5)0.0179 (5)0.0231 (5)0.0001 (4)0.0003 (4)0.0001 (4)
N40.0222 (6)0.0166 (5)0.0304 (6)0.0009 (4)0.0024 (5)0.0015 (5)
C10.0199 (6)0.0180 (6)0.0251 (6)0.0003 (5)0.0022 (5)0.0007 (5)
C20.0183 (6)0.0178 (6)0.0203 (6)0.0004 (4)0.0029 (5)0.0004 (5)
C30.0203 (6)0.0171 (6)0.0186 (6)0.0009 (4)0.0043 (5)0.0001 (5)
C40.0184 (6)0.0256 (6)0.0193 (6)0.0018 (5)0.0034 (5)0.0009 (5)
C50.0210 (6)0.0288 (7)0.0297 (7)0.0022 (5)0.0004 (5)0.0023 (6)
C60.0216 (6)0.0169 (6)0.0192 (6)0.0001 (5)0.0022 (5)0.0001 (5)
O30.0228 (5)0.0164 (4)0.0361 (5)0.0024 (3)0.0012 (4)0.0038 (4)
O40.0237 (5)0.0220 (5)0.0320 (5)0.0042 (4)0.0012 (4)0.0015 (4)
N50.0239 (5)0.0179 (5)0.0292 (6)0.0014 (4)0.0009 (5)0.0032 (4)
N60.0207 (5)0.0161 (5)0.0269 (6)0.0015 (4)0.0004 (5)0.0005 (4)
N70.0189 (5)0.0165 (5)0.0231 (5)0.0006 (4)0.0011 (4)0.0002 (4)
N80.0200 (5)0.0172 (5)0.0289 (6)0.0007 (4)0.0003 (5)0.0009 (5)
C70.0209 (6)0.0188 (6)0.0252 (6)0.0012 (5)0.0011 (5)0.0010 (5)
C80.0181 (6)0.0166 (6)0.0218 (6)0.0003 (4)0.0026 (5)0.0004 (5)
C90.0188 (6)0.0164 (6)0.0215 (6)0.0004 (4)0.0041 (5)0.0006 (5)
C100.0184 (6)0.0219 (6)0.0216 (6)0.0000 (5)0.0034 (5)0.0025 (5)
C110.0241 (6)0.0232 (6)0.0256 (7)0.0025 (5)0.0006 (5)0.0015 (5)
C120.0191 (6)0.0169 (6)0.0216 (6)0.0013 (4)0.0037 (5)0.0008 (5)
O50.0303 (5)0.0244 (5)0.0280 (5)0.0074 (4)0.0005 (4)0.0002 (4)
O60.0222 (5)0.0249 (5)0.0358 (6)0.0022 (4)0.0030 (4)0.0093 (4)
Geometric parameters (Å, º) top
O1—C61.2500 (15)N5—C71.3218 (17)
O2—C41.2284 (16)N5—N61.3668 (15)
N1—C11.3252 (17)N6—C91.3420 (16)
N1—N21.3677 (15)N6—H6A0.89 (2)
N2—C31.3389 (16)N7—C101.3606 (17)
N2—H2A0.90 (2)N7—C91.3878 (16)
N3—C41.3652 (17)N7—H7A0.887 (18)
N3—C31.3863 (16)N8—C121.3373 (17)
N3—H3A0.883 (19)N8—H8A0.914 (19)
N4—C61.3301 (17)N8—H8B0.907 (18)
N4—H4A0.897 (19)C7—C81.4094 (17)
N4—H4B0.90 (2)C7—H70.9500
C1—C21.4069 (17)C8—C91.3950 (18)
C1—H10.9500C8—C121.4612 (17)
C2—C31.3952 (17)C10—C111.5005 (18)
C2—C61.4635 (17)C11—H11A0.9800
C4—C51.4989 (18)C11—H11B0.9800
C5—H5A0.9800C11—H11C0.9800
C5—H5B0.9800O5—H5D0.93 (2)
C5—H5C0.9800O5—H5E0.87 (2)
O3—C121.2429 (15)O6—H6B0.85 (2)
O4—C101.2307 (16)O6—H6C0.93 (2)
C1—N1—N2104.71 (10)C9—N6—N5112.09 (11)
C3—N2—N1112.09 (11)C9—N6—H6A126.8 (13)
C3—N2—H2A125.0 (13)N5—N6—H6A121.1 (13)
N1—N2—H2A122.8 (13)C10—N7—C9123.96 (11)
C4—N3—C3123.98 (11)C10—N7—H7A120.2 (12)
C4—N3—H3A118.6 (12)C9—N7—H7A115.8 (12)
C3—N3—H3A117.4 (12)C12—N8—H8A117.2 (12)
C6—N4—H4A119.2 (12)C12—N8—H8B121.5 (11)
C6—N4—H4B121.0 (12)H8A—N8—H8B121.1 (16)
H4A—N4—H4B119.8 (16)N5—C7—C8112.11 (11)
N1—C1—C2112.02 (11)N5—C7—H7123.9
N1—C1—H1124.0C8—C7—H7123.9
C2—C1—H1124.0C9—C8—C7103.94 (11)
C3—C2—C1104.02 (11)C9—C8—C12124.67 (11)
C3—C2—C6124.82 (11)C7—C8—C12131.39 (12)
C1—C2—C6131.16 (12)N6—C9—N7124.94 (11)
N2—C3—N3124.53 (11)N6—C9—C8107.06 (11)
N2—C3—C2107.15 (11)N7—C9—C8127.99 (11)
N3—C3—C2128.32 (11)O4—C10—N7121.03 (12)
O2—C4—N3120.83 (12)O4—C10—C11122.25 (12)
O2—C4—C5122.63 (12)N7—C10—C11116.72 (11)
N3—C4—C5116.54 (11)C10—C11—H11A109.5
C4—C5—H5A109.5C10—C11—H11B109.5
C4—C5—H5B109.5H11A—C11—H11B109.5
H5A—C5—H5B109.5C10—C11—H11C109.5
C4—C5—H5C109.5H11A—C11—H11C109.5
H5A—C5—H5C109.5H11B—C11—H11C109.5
H5B—C5—H5C109.5O3—C12—N8122.18 (12)
O1—C6—N4122.48 (12)O3—C12—C8119.84 (11)
O1—C6—C2119.30 (11)N8—C12—C8117.98 (11)
N4—C6—C2118.18 (11)H5D—O5—H5E106.9 (19)
C7—N5—N6104.79 (10)H6B—O6—H6C102.9 (17)
C1—N1—N2—C30.37 (14)C7—N5—N6—C90.37 (15)
N2—N1—C1—C20.03 (15)N6—N5—C7—C80.04 (15)
N1—C1—C2—C30.29 (15)N5—C7—C8—C90.41 (15)
N1—C1—C2—C6179.28 (13)N5—C7—C8—C12179.72 (13)
N1—N2—C3—N3179.73 (11)N5—N6—C9—N7178.19 (12)
N1—N2—C3—C20.56 (15)N5—N6—C9—C80.63 (15)
C4—N3—C3—N20.6 (2)C10—N7—C9—N61.4 (2)
C4—N3—C3—C2179.02 (12)C10—N7—C9—C8177.21 (13)
C1—C2—C3—N20.50 (14)C7—C8—C9—N60.60 (14)
C6—C2—C3—N2179.11 (12)C12—C8—C9—N6179.51 (12)
C1—C2—C3—N3179.81 (12)C7—C8—C9—N7178.17 (12)
C6—C2—C3—N30.6 (2)C12—C8—C9—N71.7 (2)
C3—N3—C4—O20.5 (2)C9—N7—C10—O40.81 (19)
C3—N3—C4—C5178.89 (12)C9—N7—C10—C11178.96 (12)
C3—C2—C6—O11.9 (2)C9—C8—C12—O35.3 (2)
C1—C2—C6—O1177.57 (13)C7—C8—C12—O3174.86 (13)
C3—C2—C6—N4179.75 (12)C9—C8—C12—N8174.62 (12)
C1—C2—C6—N40.3 (2)C7—C8—C12—N85.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.90 (2)2.07 (2)2.7514 (14)131.9 (17)
N2—H2A···O20.90 (2)2.09 (2)2.6441 (14)118.6 (16)
N3—H3A···O10.883 (19)2.226 (18)2.8307 (14)125.4 (15)
N4—H4A···O50.897 (19)2.10 (2)2.9919 (15)173.9 (17)
N4—H4B···O6ii0.90 (2)2.12 (2)2.9893 (15)163.2 (17)
C1—H1···O6ii0.952.513.3791 (16)153
N6—H6A···O3iii0.89 (2)2.01 (2)2.7112 (14)135.8 (18)
N6—H6A···O40.89 (2)2.14 (2)2.6558 (15)116.4 (16)
N7—H7A···O30.887 (18)2.204 (18)2.8325 (14)127.4 (15)
N8—H8A···O60.914 (19)2.13 (2)3.0338 (15)169.7 (17)
N8—H8B···O5iv0.907 (18)2.052 (19)2.9354 (15)164.5 (16)
C7—H7···O5iv0.952.633.4683 (17)147
C11—H11B···N5v0.982.443.3337 (17)152
O5—H5D···O2vi0.93 (2)1.87 (2)2.7658 (14)161.1 (19)
O5—H5E···O1vii0.87 (2)1.97 (2)2.8269 (15)168 (2)
O6—H6B···N1vi0.85 (2)2.13 (2)2.9448 (16)162.5 (18)
O6—H6C···O4v0.93 (2)1.83 (2)2.7406 (14)165.0 (18)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2; (vi) x+3/2, y1/2, z+1/2; (vii) x+1, y, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKarrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890–o891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTantawy, A. S., Nasr, M. N. A., El-Sayed, M. M. A. & Tawfik, S. S. (2012). Med. Chem. Res. 21, 4139–4149.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds