organic compounds
2,2′-[(4-Bromophenyl)methylene]bis(1H-pyrrole)
aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cInternational SOS Clinics, 167A Nam Ky Khoi Nghia Street, District-3, HoChiMinh City, Vietnam
*Correspondence e-mail: nguyendonhuquynh@yahoo.com
The title compound, C15H13BrN2, is a substituted methane derivative. Three H atoms of the methane molecule have been substituted by means of two pyrrole rings and one 4-bromophenyl moiety. The two pyrrole rings are inclined to one another by 85.0 (3)°, and to the benzene ring by 71.4 (2) and 69.5 (2)°. In the crystal, molecules are linked via N—H⋯π and C—H⋯π interactions, forming layers parallel to (101). The layers are linked by C—Br⋯π interactions, forming a three-dimensional structure.
Keywords: crystal structure; 4-bromophenyl; dipyrromethane; C—H⋯π interactions; N—H⋯π interactions; C—Br⋯π interactions.
CCDC reference: 1486804
Structure description
Dipyrromethanes, substituted dipyrromethanes and meso-substituted dipyrromethanes are the building blocks for the synthesis of (Mukherjee et al., 2015), fluorescent laser dyes (Loudet & Burgess, 2007) and fluorophores. They are also an important tool in a variety of imaging applications (Taki, 2013) and chemo-sensors (Nikola et al., 2008). In general, they are synthesized by acid-catalysed condensation reaction of pyrrole or a substituted pyrrole and an aldehyde (Littler et al., 1999). The crude product is purified to obtain the corresponding dipyrromethane which is used as precursor (Lee & Hupp, 2010) for syntheses of target host molecules such as molecular nanotweezers (Zhao et al. 2013), and fluorescent dyes (Tram et al., 2009). These host molecules are utilized as optoelectronic materials (Lee & Hupp, 2010; Rio et al., 2009) in optical photovoltaic (OPV) cells, as organic light-emitting diodes (OLED), and for the purpose of material separation in supramolecular chemistry.
The title compound, Fig. 1, can be considered as a substituted methane derivative. Three H atoms of the methane molecule have been substituted by means of two pyrrole rings and one 4-bromophenyl moiety. The two pyrrole rings, N1/C8–C11 and N2/C12–C15, are inclined to one another by 85.0 (3)°, and to the benzene ring, C2–C7, by 71.4 (2) and 69.5 (2) °, respectively.
In the crystal, molecules are linked via N—H⋯π and C—H⋯π interactions, forming layers parallel to (101), Table 1 and Fig. 2. The layers are linked by C—Br⋯π interactions, forming a three-dimensional structure, Table 1 and Fig. 3.
A search of the Cambridge Structural Database (CSD, Version 5.37, last update February 2016; Groom et al., 2016), found 19 hits for 5-phenyldipyrromethanes. 5-Phenyldipyrromethane itself (CSD refcode LAYIA; Littler et al., 1999) has a very similar structural skeleton to the title molecule: the two pyrrole rings are inclined to one another by 87.1 (1)°, and to the benzene ring by 71.6 (1) and 67.8 (1)°.
Synthesis and crystallization
A suspension of 4-bromobenzaldehyde (3.24 g, 57.7 mmol) in pyrrole (100 ml, 1.44 mol) was placed in a 250 ml two-necked round-bottom flask equipped with an internal thermometer and a water condenser in the reflux position. The solution was heated to 323 k, and then the heat source was removed and TFA (444 µL, 5.77 mmol) was added immediately. A sharp increase in the temperature of the solution was observed and the solution rapidly became clear and dark. After 5 min the reaction was quenched and the product was purified following the general procedure [distilled at 360 K (0.01 mm/Hg); recrystallized from ethyl acetate:hexane (1:4)] giving the desired product as colourless crystals (yield 3.48 g, 41%; m.p. 403 K). 1H NMR (200 MHz, CDCl3): δH 5.43 (s, 1H, H-1), 5.92 (s, 2H, βH, H-11 & H-15), 6.16 (dd, J = 2.7 & 5.6 Hz, 2H, βH, H-10 & H-14), 6.67 (dd, J = 2.6 & 4.2 Hz, 2H, αH, H-9 & H-13), 7.15 (d, J = 8.2 Hz, 2H, H-6 & H-4/Ar—H),7.48 (d, J = 8.2 Hz, 2H, H-3 & H-7/Ar—H), 7.81(brs, 2H, >NH).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1486804
10.1107/S2414314616010051/su4054sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616010051/su4054Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616010051/su4054Isup3.cml
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C15H13BrN2 | F(000) = 608 |
Mr = 301.18 | Dx = 1.505 Mg m−3 |
Monoclinic, P21/n | Melting point: 403 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 5.8132 (8) Å | Cell parameters from 1789 reflections |
b = 19.763 (2) Å | θ = 2.7–27.8° |
c = 11.656 (1) Å | µ = 3.08 mm−1 |
β = 96.85 (1)° | T = 299 K |
V = 1329.6 (3) Å3 | Prism, colourless |
Z = 4 | 0.34 × 0.26 × 0.12 mm |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 2289 independent reflections |
Radiation source: fine-focus sealed tube | 1685 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Rotation method data acquisition using ω scans. | θmax = 25.4°, θmin = 2.7° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −7→5 |
Tmin = 0.421, Tmax = 0.709 | k = −23→17 |
4326 measured reflections | l = −12→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.176 | H-atom parameters constrained |
S = 1.20 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
2289 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −1.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.86594 (9) | 0.49826 (2) | 0.17591 (5) | 0.0642 (3) | |
N1 | 0.7634 (6) | 0.19396 (18) | −0.0868 (3) | 0.0443 (9) | |
H1N | 0.7680 | 0.2357 | −0.1070 | 0.053* | |
N2 | 0.1873 (6) | 0.14504 (19) | 0.1458 (3) | 0.0481 (9) | |
H2N | 0.0954 | 0.1383 | 0.0834 | 0.058* | |
C1 | 0.4652 (6) | 0.2148 (2) | 0.0487 (3) | 0.0355 (9) | |
H1 | 0.3273 | 0.2214 | −0.0074 | 0.043* | |
C2 | 0.5648 (6) | 0.28383 (19) | 0.0784 (3) | 0.0338 (9) | |
C3 | 0.4351 (7) | 0.3416 (2) | 0.0523 (4) | 0.0417 (10) | |
H3 | 0.2867 | 0.3373 | 0.0133 | 0.050* | |
C4 | 0.5182 (7) | 0.4049 (2) | 0.0820 (4) | 0.0432 (10) | |
H4 | 0.4270 | 0.4430 | 0.0642 | 0.052* | |
C5 | 0.7386 (7) | 0.41107 (19) | 0.1385 (3) | 0.0395 (10) | |
C6 | 0.8724 (6) | 0.3555 (2) | 0.1673 (4) | 0.0402 (10) | |
H6 | 1.0198 | 0.3603 | 0.2073 | 0.048* | |
C7 | 0.7871 (6) | 0.29211 (19) | 0.1364 (3) | 0.0364 (9) | |
H7 | 0.8794 | 0.2543 | 0.1545 | 0.044* | |
C8 | 0.6299 (7) | 0.1687 (2) | −0.0082 (3) | 0.0387 (9) | |
C9 | 0.8879 (8) | 0.1435 (3) | −0.1283 (4) | 0.0541 (12) | |
H9 | 0.9927 | 0.1481 | −0.1822 | 0.065* | |
C10 | 0.8336 (8) | 0.0863 (3) | −0.0785 (4) | 0.0620 (13) | |
H10 | 0.8927 | 0.0436 | −0.0914 | 0.074* | |
C11 | 0.6677 (7) | 0.1020 (2) | −0.0013 (4) | 0.0500 (11) | |
H11 | 0.5990 | 0.0716 | 0.0451 | 0.060* | |
C12 | 0.3867 (6) | 0.18121 (19) | 0.1531 (3) | 0.0351 (9) | |
C13 | 0.1542 (8) | 0.1208 (2) | 0.2525 (4) | 0.0555 (12) | |
H13 | 0.0296 | 0.0948 | 0.2698 | 0.067* | |
C14 | 0.3335 (8) | 0.1414 (2) | 0.3281 (4) | 0.0491 (11) | |
H14 | 0.3554 | 0.1322 | 0.4069 | 0.059* | |
C15 | 0.4810 (7) | 0.1791 (2) | 0.2662 (4) | 0.0478 (11) | |
H15 | 0.6194 | 0.1992 | 0.2968 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0775 (5) | 0.0397 (4) | 0.0728 (5) | −0.0020 (2) | −0.0020 (3) | −0.0044 (2) |
N1 | 0.048 (2) | 0.059 (2) | 0.028 (2) | −0.0062 (17) | 0.0100 (16) | −0.0044 (16) |
N2 | 0.039 (2) | 0.059 (2) | 0.045 (2) | −0.0109 (17) | 0.0019 (17) | 0.0040 (17) |
C1 | 0.031 (2) | 0.049 (2) | 0.026 (2) | −0.0040 (17) | −0.0014 (16) | −0.0007 (17) |
C2 | 0.033 (2) | 0.047 (2) | 0.022 (2) | −0.0015 (17) | 0.0055 (16) | 0.0024 (15) |
C3 | 0.031 (2) | 0.065 (3) | 0.029 (2) | 0.0060 (19) | 0.0012 (18) | 0.0050 (19) |
C4 | 0.041 (2) | 0.048 (3) | 0.040 (3) | 0.0109 (19) | 0.0034 (19) | 0.0049 (19) |
C5 | 0.049 (2) | 0.038 (2) | 0.033 (2) | −0.0005 (18) | 0.0112 (19) | −0.0012 (17) |
C6 | 0.038 (2) | 0.045 (3) | 0.037 (2) | −0.0014 (18) | −0.0002 (19) | 0.0006 (17) |
C7 | 0.0279 (19) | 0.043 (2) | 0.038 (2) | 0.0034 (17) | 0.0009 (17) | 0.0046 (17) |
C8 | 0.037 (2) | 0.053 (3) | 0.025 (2) | −0.0065 (19) | 0.0006 (16) | −0.0072 (18) |
C9 | 0.049 (3) | 0.078 (4) | 0.036 (3) | −0.002 (2) | 0.005 (2) | −0.014 (2) |
C10 | 0.065 (3) | 0.070 (4) | 0.051 (3) | 0.006 (3) | 0.004 (2) | −0.021 (2) |
C11 | 0.049 (3) | 0.058 (3) | 0.043 (3) | −0.004 (2) | 0.007 (2) | −0.009 (2) |
C12 | 0.031 (2) | 0.040 (2) | 0.035 (2) | −0.0054 (16) | 0.0081 (17) | −0.0051 (16) |
C13 | 0.052 (3) | 0.055 (3) | 0.065 (3) | −0.003 (2) | 0.026 (2) | 0.012 (2) |
C14 | 0.063 (3) | 0.051 (3) | 0.037 (3) | 0.001 (2) | 0.017 (2) | 0.0028 (19) |
C15 | 0.046 (2) | 0.069 (3) | 0.029 (2) | −0.017 (2) | 0.0059 (19) | −0.006 (2) |
Br1—C5 | 1.905 (4) | C5—C6 | 1.365 (5) |
N1—C9 | 1.355 (6) | C6—C7 | 1.379 (5) |
N1—C8 | 1.364 (5) | C6—H6 | 0.9300 |
N1—H1N | 0.8600 | C7—H7 | 0.9300 |
N2—C12 | 1.356 (5) | C8—C11 | 1.336 (6) |
N2—C13 | 1.368 (6) | C9—C10 | 1.326 (7) |
N2—H2N | 0.8600 | C9—H9 | 0.9300 |
C1—C12 | 1.505 (5) | C10—C11 | 1.430 (6) |
C1—C2 | 1.506 (5) | C10—H10 | 0.9300 |
C1—C8 | 1.529 (6) | C11—H11 | 0.9300 |
C1—H1 | 0.9800 | C12—C15 | 1.366 (5) |
C2—C3 | 1.381 (5) | C13—C14 | 1.344 (6) |
C2—C7 | 1.395 (5) | C13—H13 | 0.9300 |
C3—C4 | 1.372 (6) | C14—C15 | 1.400 (5) |
C3—H3 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.374 (6) | C15—H15 | 0.9300 |
C4—H4 | 0.9300 | ||
C9—N1—C8 | 110.0 (4) | C6—C7—C2 | 121.1 (4) |
C9—N1—H1N | 125.0 | C6—C7—H7 | 119.4 |
C8—N1—H1N | 125.0 | C2—C7—H7 | 119.4 |
C12—N2—C13 | 109.8 (4) | C11—C8—N1 | 107.4 (4) |
C12—N2—H2N | 125.1 | C11—C8—C1 | 131.9 (4) |
C13—N2—H2N | 125.1 | N1—C8—C1 | 120.6 (4) |
C12—C1—C2 | 111.0 (3) | C10—C9—N1 | 107.8 (4) |
C12—C1—C8 | 110.7 (3) | C10—C9—H9 | 126.1 |
C2—C1—C8 | 113.4 (3) | N1—C9—H9 | 126.1 |
C12—C1—H1 | 107.1 | C9—C10—C11 | 107.7 (4) |
C2—C1—H1 | 107.1 | C9—C10—H10 | 126.2 |
C8—C1—H1 | 107.1 | C11—C10—H10 | 126.2 |
C3—C2—C7 | 117.4 (4) | C8—C11—C10 | 107.2 (4) |
C3—C2—C1 | 120.8 (3) | C8—C11—H11 | 126.4 |
C7—C2—C1 | 121.8 (3) | C10—C11—H11 | 126.4 |
C4—C3—C2 | 122.1 (4) | N2—C12—C15 | 106.6 (4) |
C4—C3—H3 | 118.9 | N2—C12—C1 | 121.4 (3) |
C2—C3—H3 | 118.9 | C15—C12—C1 | 132.0 (3) |
C3—C4—C5 | 118.8 (4) | C14—C13—N2 | 107.9 (4) |
C3—C4—H4 | 120.6 | C14—C13—H13 | 126.0 |
C5—C4—H4 | 120.6 | N2—C13—H13 | 126.0 |
C6—C5—C4 | 121.2 (4) | C13—C14—C15 | 107.4 (4) |
C6—C5—Br1 | 118.5 (3) | C13—C14—H14 | 126.3 |
C4—C5—Br1 | 120.3 (3) | C15—C14—H14 | 126.3 |
C5—C6—C7 | 119.4 (4) | C12—C15—C14 | 108.3 (4) |
C5—C6—H6 | 120.3 | C12—C15—H15 | 125.9 |
C7—C6—H6 | 120.3 | C14—C15—H15 | 125.9 |
C12—C1—C2—C3 | −100.7 (4) | C12—C1—C8—N1 | −164.7 (3) |
C8—C1—C2—C3 | 133.9 (4) | C2—C1—C8—N1 | −39.2 (5) |
C12—C1—C2—C7 | 77.2 (4) | C8—N1—C9—C10 | 0.8 (5) |
C8—C1—C2—C7 | −48.1 (5) | N1—C9—C10—C11 | −0.4 (6) |
C7—C2—C3—C4 | −0.4 (5) | N1—C8—C11—C10 | 0.6 (5) |
C1—C2—C3—C4 | 177.7 (4) | C1—C8—C11—C10 | 176.9 (4) |
C2—C3—C4—C5 | 0.7 (6) | C9—C10—C11—C8 | −0.1 (5) |
C3—C4—C5—C6 | −1.4 (6) | C13—N2—C12—C15 | 0.5 (5) |
C3—C4—C5—Br1 | 177.4 (3) | C13—N2—C12—C1 | −179.1 (4) |
C4—C5—C6—C7 | 1.7 (6) | C2—C1—C12—N2 | 139.7 (4) |
Br1—C5—C6—C7 | −177.2 (3) | C8—C1—C12—N2 | −93.5 (4) |
C5—C6—C7—C2 | −1.3 (6) | C2—C1—C12—C15 | −39.8 (6) |
C3—C2—C7—C6 | 0.7 (5) | C8—C1—C12—C15 | 87.0 (5) |
C1—C2—C7—C6 | −177.3 (3) | C12—N2—C13—C14 | −0.3 (5) |
C9—N1—C8—C11 | −0.8 (5) | N2—C13—C14—C15 | −0.1 (5) |
C9—N1—C8—C1 | −177.7 (4) | N2—C12—C15—C14 | −0.6 (5) |
C12—C1—C8—C11 | 19.3 (6) | C1—C12—C15—C14 | 179.0 (4) |
C2—C1—C8—C11 | 144.8 (4) | C13—C14—C15—C12 | 0.4 (5) |
Cg1, Cg2 and Cg3 are the centroids of the N1/C8–C11, N2/C12–C15 and C2–C7 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···Cg1i | 0.86 | 2.43 | 3.262 (4) | 163 |
C6—H6···Cg1ii | 0.93 | 2.89 | 3.656 (5) | 141 |
C9—H9···Cg3iii | 0.93 | 2.71 | 3.590 (5) | 159 |
C14—H14···Cg3iv | 0.93 | 2.79 | 3.564 (5) | 142 |
C5—Br1···Cg2v | 1.91 (1) | 3.70 (1) | 5.595 (4) | 171 (1) |
Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+1/2, z+1/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) x−1/2, −y+1/2, z+1/2; (v) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
The authors thank Professor Dr Hartmut, FG Strukturforschung, Material-und Geowissenschaften, Technische Universit at Darmstadt, for his kind cooperation to record the XRD of the crystal, and for providing diffractometer time.
References
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lee, C. Y. & Hupp, J. T. (2010). Langmuir, 26, 3760–3765. CrossRef PubMed CAS Google Scholar
Littler, B. J., Miller, M. A., Hung, C.-H., Wagner, R. W., O'Shea, D. F., Boyle, P. D. & Lindsey, J. S. (1999). J. Org. Chem. 64, 1391–1396. CSD CrossRef CAS Google Scholar
Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mukherjee, S., Bauri, A. K., Banerjee, S. & Bhattacharya, S. (2015). ScienceJet, 100, 1–9. Google Scholar
Nikola, B., Marija, R. & Kata, M. (2008). US Patent No. WO2008114067A1. Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Rio, Y., Sánchez-García, D., Seitz, W., Torres, T., Sessler, J. L. & Guldi, D. M. (2009). Chem. Eur. J. 15, 3956–3959. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taki, M. (2013). Cadmium: From Toxicity to Essentiality, Vol. 11, Metal ions in Life Sciences, edited by A. Sigel, H. Sigel & R. K. O. Sigel, pp. 99–115. Berlin: Springer. Google Scholar
Tram, K., Yan, H., Jenkins, H. A., Vassiliev, S. & Bruce, D. (2009). Dyes Pigments, 82, 392–395. CSD CrossRef CAS Google Scholar
Zhao, H., Liao, J., Yang, D., Xie, Y., Xu, Y., Wang, H. & Wang, B. (2013). Aust. J. Chem. 66, 972–982. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.