organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 2-(benzo­yl­oxy)benzoate

aDepartment of Physics, SJB Institute of Technology, Kengeri, Bangalore 560 060, India, bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and cDepartment of Physics, Vidyavardhaka College of Engineering, Mysore 570 002, India
*Correspondence e-mail: mychandru.10@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 May 2016; accepted 30 May 2016; online 17 June 2016)

In the title compound, C15H12O4, the dihedral angle between the two aryl rings is 68.19 (9)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions forming chains along the b-axis direction. The chains are linked by offset ππ inter­actions [inter­centroid distance = 3.6806 (14) Å], forming sheets lying parallel to (10-1).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzyl benzoate and its derivatives represent an inter­esting class of compounds, as they improve the stability and odour characteristics of products in which they are used as the main ingredients. Benzoate derivatives have drawn much attention because of their medicinal activities, such as anti-microbial (Ankersen et al., 1997[Ankersen, M., Peschke, B., Hansen, B. S. & Hansen, T. K. (1997). Bioorg. Med. Chem. Lett. 7, 1293-1298.]) and anti­cancer (Revesz et al., 2004[Revesz, L., Blum, E., Di Padova, E. T., Buhl, R., Feifel, H., Gram, P., Hiestand, U., Manning, U. & Rucklin, G. (2004). Bioorg. Med. Chem. Lett. 14, 3595-3599.]). In addition, a series of benzyl­oxybenzaldehyde derivatives were prepared and tested against the HL-60 cell line for anti­cancer activity (Lin et al., 2005[Lin, C. F., Yang, J. S., Chang, C. Y., Kuo, S. C., Lee, M. R. & Huang, L. J. (2005). Bioorg. Med. Chem. 13, 1537-1544.]). In view of the profound inter­est of these derivatives, we report herein on the synthesis and crystal structure of the title compound.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The dihedral angle between the benzene rings, C1–C6 and C10–C15, is 68.19 (9)°. The O9—C7=O8 group is almost coplanar with the aromatic ring C1–C6, with a dihedral angle of 8.11 (18)°, while it is inclined to the second benzene ring, C10–C15, by 74.8 (19) °. The O18—C16=O17 group is also almost coplanar with the benzene ring, C10–C15, to which it is attached with a dihedral angle of 5.1 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

There are no classical hydrogen bonds in the crystal structure. However, in the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming chains along the b axis direction (Table 1[link] and Fig. 2[link]). The chains are linked by offset ππ inter­actions [Cg1⋯Cg1i = 3.6806 (14) Å, where Cg1 is the centroid of ring C1–C6, inter­planar distance = 3.4792 (7) Å, slippage = 1.201 Å; symmetry code: (i) − x + 1, − y, − z + 2], forming sheets lying parallel to (10[\overline{1}]); see Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19CCg2i 0.96 2.83 3.625 (3) 140
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The C—H⋯π (see Table 1[link]) and ππ inter­actions are represented by dashed lines, and for clarity only H atom H19C (grey ball) is included.

Synthesis and crystallization

The solution of 2-hy­droxy­benzoic acid methyl ester (1.0 mmol) and benzoyl chloride (1.5 mmol) in pyridine was refluxed at 333 K. On completion of the reaction (monitored by TLC), the mixture was cooled to room temperature and pyridine was removed under reduced pressure. The residue obtained was dissolved in di­chloro­methane and washed with water. The separated organic layer was dried over anhydrous sodium sulfate and the solvent removed using a rotary evaporator. The crude product obtained was purified using silica gel column chromatography. Colourless block-like crystals were obtained by slow evaporation of a solution of the title compound in ethanol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H12O4
Mr 256.25
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 19.529 (5), 8.540 (2), 14.960 (4)
β (°) 93.334 (14)
V3) 2490.8 (11)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.83
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 6308, 2020, 1745
Rint 0.044
(sin θ/λ)max−1) 0.588
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.156, 1.19
No. of reflections 2020
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Methyl 2-(benzoyloxy)benzoate top
Crystal data top
C15H12O4F(000) = 1072
Mr = 256.25Dx = 1.367 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 2020 reflections
a = 19.529 (5) Åθ = 4.5–65.1°
b = 8.540 (2) ŵ = 0.83 mm1
c = 14.960 (4) ÅT = 296 K
β = 93.334 (14)°Block, colourless
V = 2490.8 (11) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker X8 Proteum
diffractometer
1745 reflections with I > 2σ(I)
Radiation source: Bruker MicroStar microfocus rotating anodeRint = 0.044
Helios multilayer optics monochromatorθmax = 65.1°, θmin = 4.5°
Detector resolution: 10.7 pixels mm-1h = 2222
φ and ω scansk = 109
6308 measured reflectionsl = 1117
2020 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.002
2020 reflectionsΔρmax = 0.31 e Å3
174 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0090 (9)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O80.33968 (6)0.10878 (15)0.89122 (8)0.0565 (5)
O90.42601 (6)0.15246 (15)0.80123 (8)0.0492 (4)
O170.33585 (7)0.02518 (16)0.69827 (10)0.0652 (5)
O180.26162 (7)0.10223 (16)0.60645 (8)0.0610 (5)
C10.43639 (8)0.06021 (19)0.90068 (10)0.0422 (5)
C20.50358 (8)0.0827 (2)0.87647 (11)0.0466 (5)
C30.54205 (9)0.2026 (2)0.91535 (12)0.0536 (6)
C40.51445 (10)0.2986 (2)0.97716 (13)0.0574 (6)
C50.44773 (10)0.2784 (2)1.00044 (13)0.0586 (6)
C60.40884 (9)0.1591 (2)0.96259 (12)0.0512 (6)
C70.39454 (8)0.0715 (2)0.86554 (10)0.0434 (5)
C100.38930 (8)0.2783 (2)0.76212 (11)0.0457 (5)
C110.41229 (10)0.4253 (2)0.78495 (12)0.0558 (6)
C120.37880 (11)0.5548 (2)0.74854 (14)0.0631 (7)
C130.32272 (11)0.5356 (2)0.68963 (14)0.0617 (7)
C140.30113 (10)0.3877 (2)0.66520 (13)0.0543 (6)
C150.33425 (8)0.2550 (2)0.70022 (11)0.0455 (5)
C160.31208 (9)0.0961 (2)0.67047 (11)0.0473 (6)
C190.23598 (12)0.0457 (3)0.57343 (14)0.0693 (7)
H20.522300.017500.834500.0560*
H30.586900.218400.899600.0640*
H40.541000.378301.003700.0690*
H50.429100.345301.041700.0700*
H60.363900.144800.978500.0610*
H110.450300.437800.824800.0670*
H120.394200.654900.763800.0760*
H130.299400.622800.666300.0740*
H140.263700.376000.624500.0650*
H19A0.270900.098000.542100.1040*
H19B0.196500.028700.533300.1040*
H19C0.223400.109300.622800.1040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.0495 (7)0.0643 (9)0.0571 (8)0.0116 (5)0.0150 (6)0.0101 (6)
O90.0422 (7)0.0571 (7)0.0485 (7)0.0056 (5)0.0048 (5)0.0130 (5)
O170.0709 (9)0.0517 (8)0.0717 (9)0.0106 (6)0.0062 (6)0.0001 (6)
O180.0625 (8)0.0631 (9)0.0558 (8)0.0080 (6)0.0089 (6)0.0073 (6)
C10.0447 (9)0.0429 (9)0.0387 (8)0.0001 (7)0.0006 (6)0.0036 (6)
C20.0464 (9)0.0495 (10)0.0441 (9)0.0008 (7)0.0032 (7)0.0002 (7)
C30.0509 (10)0.0502 (10)0.0594 (10)0.0083 (7)0.0008 (8)0.0031 (8)
C40.0689 (12)0.0417 (10)0.0608 (11)0.0090 (8)0.0029 (8)0.0010 (8)
C50.0727 (12)0.0450 (10)0.0589 (11)0.0017 (8)0.0118 (9)0.0065 (8)
C60.0534 (9)0.0490 (10)0.0521 (10)0.0007 (7)0.0099 (7)0.0012 (7)
C70.0434 (9)0.0495 (9)0.0372 (8)0.0008 (7)0.0015 (6)0.0002 (6)
C100.0445 (9)0.0522 (10)0.0410 (9)0.0046 (7)0.0088 (7)0.0090 (7)
C110.0576 (10)0.0602 (11)0.0495 (10)0.0071 (8)0.0027 (8)0.0056 (8)
C120.0763 (13)0.0502 (11)0.0636 (12)0.0069 (9)0.0108 (10)0.0053 (9)
C130.0671 (12)0.0515 (11)0.0670 (12)0.0088 (9)0.0093 (9)0.0148 (9)
C140.0505 (10)0.0572 (11)0.0552 (11)0.0046 (7)0.0029 (8)0.0135 (8)
C150.0440 (9)0.0517 (10)0.0415 (9)0.0036 (7)0.0086 (7)0.0080 (7)
C160.0457 (9)0.0554 (11)0.0416 (9)0.0030 (7)0.0085 (7)0.0053 (7)
C190.0731 (13)0.0728 (13)0.0614 (12)0.0175 (10)0.0019 (9)0.0053 (10)
Geometric parameters (Å, º) top
O8—C71.202 (2)C12—C131.375 (3)
O9—C71.360 (2)C13—C141.374 (3)
O9—C101.401 (2)C14—C151.392 (2)
O17—C161.200 (2)C15—C161.485 (2)
O18—C161.335 (2)C2—H20.9300
O18—C191.436 (3)C3—H30.9300
C1—C21.395 (2)C4—H40.9300
C1—C61.385 (2)C5—H50.9300
C1—C71.470 (2)C6—H60.9300
C2—C31.379 (2)C11—H110.9300
C3—C41.370 (3)C12—H120.9300
C4—C51.379 (3)C13—H130.9300
C5—C61.373 (3)C14—H140.9300
C10—C111.370 (2)C19—H19A0.9600
C10—C151.392 (2)C19—H19B0.9600
C11—C121.381 (3)C19—H19C0.9600
C7—O9—C10116.36 (13)O18—C16—C15111.69 (14)
C16—O18—C19116.14 (15)C1—C2—H2120.00
C2—C1—C6119.84 (15)C3—C2—H2120.00
C2—C1—C7121.64 (14)C2—C3—H3120.00
C6—C1—C7118.45 (14)C4—C3—H3120.00
C1—C2—C3119.38 (15)C3—C4—H4120.00
C2—C3—C4120.22 (16)C5—C4—H4120.00
C3—C4—C5120.69 (17)C4—C5—H5120.00
C4—C5—C6119.79 (17)C6—C5—H5120.00
C1—C6—C5120.07 (16)C1—C6—H6120.00
O8—C7—O9122.63 (15)C5—C6—H6120.00
O8—C7—C1125.17 (15)C10—C11—H11120.00
O9—C7—C1112.17 (13)C12—C11—H11120.00
O9—C10—C11116.52 (15)C11—C12—H12120.00
O9—C10—C15121.67 (15)C13—C12—H12120.00
C11—C10—C15121.75 (16)C12—C13—H13120.00
C10—C11—C12119.66 (17)C14—C13—H13120.00
C11—C12—C13119.92 (17)C13—C14—H14119.00
C12—C13—C14120.04 (17)C15—C14—H14119.00
C13—C14—C15121.30 (18)O18—C19—H19A110.00
C10—C15—C14117.26 (16)O18—C19—H19B109.00
C10—C15—C16122.05 (15)O18—C19—H19C109.00
C14—C15—C16120.68 (15)H19A—C19—H19B109.00
O17—C16—O18122.51 (16)H19A—C19—H19C109.00
O17—C16—C15125.81 (16)H19B—C19—H19C110.00
C10—O9—C7—O83.4 (2)C4—C5—C6—C10.5 (3)
C10—O9—C7—C1178.57 (13)O9—C10—C11—C12179.64 (16)
C7—O9—C10—C11107.89 (17)C15—C10—C11—C122.5 (3)
C7—O9—C10—C1574.9 (2)O9—C10—C15—C14180.00 (16)
C19—O18—C16—O171.2 (3)O9—C10—C15—C161.3 (2)
C19—O18—C16—C15179.50 (15)C11—C10—C15—C142.9 (3)
C6—C1—C2—C30.7 (2)C11—C10—C15—C16175.71 (16)
C7—C1—C2—C3176.19 (15)C10—C11—C12—C130.1 (3)
C2—C1—C6—C50.4 (3)C11—C12—C13—C141.7 (3)
C7—C1—C6—C5176.55 (16)C12—C13—C14—C151.2 (3)
C2—C1—C7—O8170.75 (16)C13—C14—C15—C101.1 (3)
C2—C1—C7—O97.2 (2)C13—C14—C15—C16177.55 (18)
C6—C1—C7—O86.1 (3)C10—C15—C16—O173.7 (3)
C6—C1—C7—O9175.94 (14)C10—C15—C16—O18175.58 (15)
C1—C2—C3—C40.0 (3)C14—C15—C16—O17177.75 (18)
C2—C3—C4—C50.9 (3)C14—C15—C16—O183.0 (2)
C3—C4—C5—C61.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19C···Cg2i0.962.833.625 (3)140
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors would like to thank the SJB Institute of Technology, Kengeri, Bangalore, for their support. MM would like to thank the UGC, New Delhi, Government of India, for awarding project F.41–920/2012(SR).

References

First citationAnkersen, M., Peschke, B., Hansen, B. S. & Hansen, T. K. (1997). Bioorg. Med. Chem. Lett. 7, 1293–1298.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLin, C. F., Yang, J. S., Chang, C. Y., Kuo, S. C., Lee, M. R. & Huang, L. J. (2005). Bioorg. Med. Chem. 13, 1537–1544.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRevesz, L., Blum, E., Di Padova, E. T., Buhl, R., Feifel, H., Gram, P., Hiestand, U., Manning, U. & Rucklin, G. (2004). Bioorg. Med. Chem. Lett. 14, 3595–3599.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds