organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,4-Di­chloro-N-{[1-(2,4-di­chloro­benzo­yl)piperidin-4-yl]meth­yl}benzamide

aDepartment of Physics, Jaya College of Arts and Science, Thiruninravur 602 025, Tamilnadu, India, bDepartment of Chemistry, Madras Christian College, Chennai-59, India, and cPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 May 2016; accepted 7 June 2016; online 10 June 2016)

In the title compound, C20H18Cl4N2O2, the piperdine ring adopts a chair conformation. The dihedral angles between its mean plane and the two benzene rings are 45.5 (3) and 28.0 (3)°, while the benzene rings are inclined to one another by 54.5 (3)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains along the a-axis direction. Neighbouring chains are linked by C—H⋯π inter­actions, forming double-stranded chains along [100].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Piperidones are an important group of heterocyclic compounds in the field of medicinal chemistry due to their biological activities which include cytotoxic and anti­cancer properties (Dimmock et al., 2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]). They are also reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anti­cancer and anti­microbial activities (Perumal et al., 2001[Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]). Piperidine derivatives have been observed to exhibit anti­microbial, anti-inflammatory, anti­viral, anti­malarial and general anesthetic activities (Aridoss et al., 2009[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.]). Functionalized piperidines are familiar substructures found in biologically active natural products and synthetic pharmaceuticals (Michael, 2001[Michael, J. P. (2001). The Alkaloids. Chemistry and Biology, Vol. 55, edited by G. A. Cordell, pp. 91-258. New York: Academic Press.]; Pinder, 1992[Pinder, A. R. (1992). Nat. Prod. Rep. 9, 491-504.]; Rubiralta et al., 1991[Rubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225-312. Amsterdam: Elsevier.]). Piperidines have also been found to exhibit blood-cholesterol-lowering activities (Nalanishi et al., 1974[Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Japanese Patent No. 74-3987.]). Herein, we report on the synthesis and crystal structure of the title piperidone derivative.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The bond distances and bond angles are close to those observed for similar structures (Revathi et al., 2015[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359-o360.]; Prathebha et al., 2015[Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39-o40.]). The the piperdine ring (N1/C8–C12) adopts a chair conformation. The dihedral angles between its mean plane and the two benzene rings (C1–C6 and C15–C20) are 44.5 (3) and 28.0 (3)°, respectively, while the benzene rings are inclined to one another by 54.5 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, adjacent mol­ecules are linked through N—H⋯O hydrogen bonds, forming chains along the a-axis direction (Table 1[link] and Fig. 2[link]). Neighbouring chains are linked via C—H⋯π inter­actions, forming double-stranded chains along [100]; see Table 1[link] and Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.90 (6) 1.94 (6) 2.809 (8) 163 (5)
C4—H4⋯Cg1 0.93 2.93 3.628 (8) 132
Symmetry code: (i) x+1, y, z.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (see Table 1[link]). For clarity, the C-bound H atoms have been omitted.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound, with hydrogen bonds and C—H⋯π inter­actions shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in these inter­actions have been omitted.

Synthesis and crystallization

The title compound was synthesized following a published procedure (Revathi et al., 2015[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359-o360.]). In a 250 ml round-bottomed flask, 120 ml of ethyl­methyl­ketone was added to 4-amino­methyl­piperidine (0.02 mol) and stirred at room temperature. After 5 min, tri­ethyl­amine (0.04 mol) was added and the mixture was stirred for 15 min. Then 2,4-di­chloro benzoyl chloride (0.04 mol) was added and the reaction mixture was stirred at room temperature for 2 h. A white precipitate of tri­ethyl­ammonium chloride was formed, which was filtered and the filtrate was evaporated to give the crude title product. It was recrystallized twice from ethyl methyl ketone to give colourless block-like crystals of the title compound (yield: 82%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H18Cl4N2O2
Mr 460.16
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.2338 (2), 10.9617 (2), 12.2646 (3)
α, β, γ (°) 76.239 (1), 83.571 (1), 80.407 (1)
V3) 1057.12 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.58
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.870, 0.891
No. of measured, independent and observed [I > 2σ(I)] reflections 3729, 3729, 2242
Rint 0.000
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.186, 1.07
No. of reflections 3726
No. of parameters 258
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.34
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

2,4-Dichloro-N-{[1-(2,4-dichlorobenzoyl)piperidin-4-yl]methyl}benzamide top
Crystal data top
C20H18Cl4N2O2Z = 2
Mr = 460.16F(000) = 472
Triclinic, P1Dx = 1.446 Mg m3
a = 8.2338 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9617 (2) ÅCell parameters from 2242 reflections
c = 12.2646 (3) Åθ = 1.7–25.0°
α = 76.239 (1)°µ = 0.58 mm1
β = 83.571 (1)°T = 293 K
γ = 80.407 (1)°Block, colourless
V = 1057.12 (4) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3729 independent reflections
Radiation source: fine-focus sealed tube2242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω and \ f scanθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.870, Tmax = 0.891k = 1213
3729 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.P)2 + 4.198P]
where P = (Fo2 + 2Fc2)/3
3726 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1778 (8)0.3093 (6)0.8072 (5)0.0539 (16)
C20.2618 (8)0.2486 (7)0.9025 (5)0.0619 (18)
H20.34300.29350.94280.074*
C30.2213 (8)0.1181 (7)0.9365 (5)0.0622 (19)
C40.1047 (9)0.0510 (7)0.8774 (6)0.0659 (19)
H40.08190.03690.90060.079*
C50.0200 (8)0.1148 (6)0.7821 (5)0.0578 (17)
H50.06180.06970.74250.069*
C60.0572 (7)0.2457 (6)0.7458 (5)0.0454 (14)
C70.0273 (8)0.3122 (6)0.6384 (5)0.0493 (15)
C80.2759 (8)0.2995 (7)0.7375 (5)0.0634 (18)
H8A0.20800.26540.80400.076*
H8B0.31930.37110.75100.076*
C90.4171 (7)0.1987 (6)0.7159 (5)0.0564 (17)
H9A0.37310.12280.71330.068*
H9B0.48790.17730.77780.068*
C100.5195 (8)0.2414 (6)0.6063 (5)0.0517 (16)
H100.57540.31090.61380.062*
C110.4077 (8)0.2907 (7)0.5107 (5)0.0644 (19)
H11A0.36050.22080.49710.077*
H11B0.47260.32540.44280.077*
C120.2685 (8)0.3931 (7)0.5361 (6)0.068 (2)
H12A0.31410.46660.54340.082*
H12B0.19600.41930.47510.082*
C130.6490 (8)0.1333 (6)0.5858 (5)0.0601 (18)
H13A0.70810.09770.65300.072*
H13B0.59600.06720.57030.072*
C140.7855 (9)0.1351 (7)0.3983 (7)0.068 (2)
C150.9081 (8)0.1928 (6)0.3085 (6)0.0558 (16)
C161.0746 (9)0.1642 (6)0.3215 (6)0.0663 (19)
H161.11030.11390.38930.080*
C171.1912 (9)0.2076 (7)0.2368 (6)0.0652 (19)
H171.30340.18600.24710.078*
C181.1380 (8)0.2830 (6)0.1379 (6)0.0588 (17)
C190.9714 (9)0.3206 (7)0.1231 (6)0.0642 (18)
H190.93620.37460.05660.077*
C200.8589 (8)0.2759 (7)0.2094 (6)0.0631 (18)
N10.1756 (7)0.3417 (5)0.6411 (4)0.0586 (14)
N20.7647 (7)0.1751 (6)0.4921 (5)0.0603 (15)
O10.0451 (6)0.3363 (4)0.5513 (4)0.0681 (13)
O20.7133 (9)0.0541 (6)0.3794 (5)0.120 (3)
Cl10.2283 (3)0.47199 (19)0.76344 (18)0.1046 (9)
Cl20.3249 (3)0.0404 (3)1.05567 (19)0.1082 (9)
Cl30.6511 (3)0.3285 (3)0.1925 (2)0.1024 (8)
Cl41.2777 (3)0.3376 (2)0.02837 (18)0.0933 (7)
H2A0.822 (7)0.237 (5)0.497 (5)0.042 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.064 (4)0.051 (4)0.043 (4)0.003 (3)0.005 (3)0.007 (3)
C20.061 (4)0.073 (5)0.047 (4)0.000 (4)0.004 (3)0.012 (3)
C30.057 (4)0.074 (5)0.050 (4)0.022 (4)0.013 (3)0.008 (4)
C40.086 (6)0.050 (4)0.061 (5)0.016 (4)0.016 (4)0.003 (4)
C50.066 (4)0.054 (4)0.055 (4)0.008 (3)0.012 (3)0.012 (3)
C60.047 (4)0.050 (4)0.040 (3)0.008 (3)0.004 (3)0.008 (3)
C70.056 (4)0.046 (4)0.045 (4)0.001 (3)0.005 (3)0.013 (3)
C80.065 (4)0.087 (5)0.044 (4)0.023 (4)0.000 (3)0.018 (4)
C90.048 (4)0.075 (5)0.043 (4)0.011 (3)0.012 (3)0.002 (3)
C100.053 (4)0.055 (4)0.044 (4)0.012 (3)0.003 (3)0.001 (3)
C110.063 (4)0.077 (5)0.040 (4)0.006 (4)0.002 (3)0.006 (3)
C120.054 (4)0.077 (5)0.059 (4)0.005 (4)0.001 (3)0.010 (4)
C130.051 (4)0.064 (4)0.056 (4)0.006 (3)0.004 (3)0.003 (3)
C140.060 (5)0.064 (5)0.082 (5)0.010 (4)0.010 (4)0.025 (4)
C150.059 (4)0.050 (4)0.062 (4)0.015 (3)0.004 (3)0.019 (3)
C160.074 (5)0.060 (4)0.064 (5)0.013 (4)0.005 (4)0.011 (4)
C170.055 (4)0.066 (5)0.072 (5)0.004 (4)0.001 (4)0.018 (4)
C180.056 (4)0.067 (4)0.057 (4)0.013 (3)0.005 (3)0.022 (4)
C190.066 (5)0.073 (5)0.056 (4)0.014 (4)0.002 (3)0.016 (4)
C200.055 (4)0.068 (5)0.072 (5)0.008 (4)0.003 (4)0.027 (4)
N10.055 (3)0.066 (4)0.049 (3)0.003 (3)0.002 (3)0.005 (3)
N20.053 (4)0.064 (4)0.064 (4)0.015 (3)0.002 (3)0.013 (3)
O10.082 (3)0.069 (3)0.051 (3)0.008 (3)0.016 (2)0.004 (2)
O20.154 (6)0.125 (5)0.110 (5)0.092 (5)0.054 (4)0.061 (4)
Cl10.157 (2)0.0591 (12)0.0783 (14)0.0125 (13)0.0236 (14)0.0114 (10)
Cl20.0897 (16)0.135 (2)0.0803 (15)0.0405 (14)0.0055 (12)0.0306 (14)
Cl30.0602 (12)0.143 (2)0.0965 (16)0.0136 (13)0.0045 (11)0.0129 (15)
Cl40.0793 (14)0.130 (2)0.0720 (13)0.0303 (13)0.0173 (11)0.0250 (13)
Geometric parameters (Å, º) top
C1—C21.375 (9)C11—C121.526 (9)
C1—C61.376 (8)C11—H11A0.9700
C1—Cl11.729 (6)C11—H11B0.9700
C2—C31.385 (9)C12—N11.462 (8)
C2—H20.9300C12—H12A0.9700
C3—C41.360 (9)C12—H12B0.9700
C3—Cl21.720 (7)C13—N21.445 (8)
C4—C51.391 (9)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.389 (8)C14—O21.224 (8)
C5—H50.9300C14—N21.310 (9)
C6—C71.503 (8)C14—C151.504 (9)
C7—O11.234 (7)C15—C161.373 (9)
C7—N11.320 (8)C15—C201.390 (9)
C8—N11.458 (8)C16—C171.386 (9)
C8—C91.511 (9)C16—H160.9300
C8—H8A0.9700C17—C181.367 (9)
C8—H8B0.9700C17—H170.9300
C9—C101.521 (8)C18—C191.384 (9)
C9—H9A0.9700C18—Cl41.728 (7)
C9—H9B0.9700C19—C201.380 (9)
C10—C131.505 (8)C19—H190.9300
C10—C111.512 (8)C20—Cl31.732 (7)
C10—H100.9800N2—H2A0.90 (6)
C2—C1—C6122.6 (6)C10—C11—H11B109.2
C2—C1—Cl1118.1 (5)C12—C11—H11B109.2
C6—C1—Cl1119.3 (5)H11A—C11—H11B107.9
C1—C2—C3117.7 (6)N1—C12—C11108.9 (5)
C1—C2—H2121.2N1—C12—H12A109.9
C3—C2—H2121.2C11—C12—H12A109.9
C4—C3—C2121.8 (6)N1—C12—H12B109.9
C4—C3—Cl2119.8 (6)C11—C12—H12B109.9
C2—C3—Cl2118.4 (6)H12A—C12—H12B108.3
C3—C4—C5119.4 (6)N2—C13—C10111.2 (5)
C3—C4—H4120.3N2—C13—H13A109.4
C5—C4—H4120.3C10—C13—H13A109.4
C6—C5—C4120.3 (6)N2—C13—H13B109.4
C6—C5—H5119.9C10—C13—H13B109.4
C4—C5—H5119.9H13A—C13—H13B108.0
C1—C6—C5118.2 (6)O2—C14—N2124.6 (7)
C1—C6—C7122.0 (5)O2—C14—C15118.3 (7)
C5—C6—C7119.7 (5)N2—C14—C15117.1 (7)
O1—C7—N1122.9 (6)C16—C15—C20117.2 (6)
O1—C7—C6118.3 (6)C16—C15—C14120.8 (6)
N1—C7—C6118.8 (5)C20—C15—C14122.0 (6)
N1—C8—C9110.3 (5)C15—C16—C17122.2 (7)
N1—C8—H8A109.6C15—C16—H16118.9
C9—C8—H8A109.6C17—C16—H16118.9
N1—C8—H8B109.6C18—C17—C16118.7 (7)
C9—C8—H8B109.6C18—C17—H17120.7
H8A—C8—H8B108.1C16—C17—H17120.7
C8—C9—C10112.5 (5)C17—C18—C19121.3 (6)
C8—C9—H9A109.1C17—C18—Cl4120.7 (5)
C10—C9—H9A109.1C19—C18—Cl4117.9 (5)
C8—C9—H9B109.1C20—C19—C18118.3 (7)
C10—C9—H9B109.1C20—C19—H19120.9
H9A—C9—H9B107.8C18—C19—H19120.9
C13—C10—C11112.4 (5)C19—C20—C15122.0 (6)
C13—C10—C9109.5 (5)C19—C20—Cl3118.0 (6)
C11—C10—C9109.8 (5)C15—C20—Cl3120.0 (5)
C13—C10—H10108.3C7—N1—C8124.9 (6)
C11—C10—H10108.3C7—N1—C12119.9 (6)
C9—C10—H10108.3C8—N1—C12113.5 (5)
C10—C11—C12112.0 (6)C14—N2—C13124.7 (6)
C10—C11—H11A109.2C14—N2—H2A117 (4)
C12—C11—H11A109.2C13—N2—H2A118 (4)
C6—C1—C2—C30.0 (10)O2—C14—C15—C2071.3 (10)
Cl1—C1—C2—C3179.6 (5)N2—C14—C15—C20109.3 (8)
C1—C2—C3—C41.1 (10)C20—C15—C16—C174.8 (10)
C1—C2—C3—Cl2179.9 (5)C14—C15—C16—C17174.8 (7)
C2—C3—C4—C51.9 (11)C15—C16—C17—C181.0 (11)
Cl2—C3—C4—C5179.1 (5)C16—C17—C18—C192.9 (10)
C3—C4—C5—C61.7 (10)C16—C17—C18—Cl4178.8 (5)
C2—C1—C6—C50.1 (10)C17—C18—C19—C202.6 (10)
Cl1—C1—C6—C5179.4 (5)Cl4—C18—C19—C20179.0 (5)
C2—C1—C6—C7176.7 (6)C18—C19—C20—C151.5 (11)
Cl1—C1—C6—C72.8 (9)C18—C19—C20—Cl3177.4 (5)
C4—C5—C6—C10.7 (9)C16—C15—C20—C195.0 (10)
C4—C5—C6—C7175.9 (6)C14—C15—C20—C19174.5 (7)
C1—C6—C7—O179.8 (8)C16—C15—C20—Cl3173.9 (5)
C5—C6—C7—O196.7 (7)C14—C15—C20—Cl36.6 (9)
C1—C6—C7—N1100.6 (7)O1—C7—N1—C8170.7 (6)
C5—C6—C7—N183.0 (8)C6—C7—N1—C88.9 (9)
N1—C8—C9—C1053.7 (7)O1—C7—N1—C126.7 (9)
C8—C9—C10—C13175.6 (5)C6—C7—N1—C12172.9 (5)
C8—C9—C10—C1151.7 (7)C9—C8—N1—C7106.5 (7)
C13—C10—C11—C12175.5 (6)C9—C8—N1—C1258.4 (7)
C9—C10—C11—C1253.3 (8)C11—C12—N1—C7106.3 (7)
C10—C11—C12—N156.6 (8)C11—C12—N1—C859.4 (8)
C11—C10—C13—N266.5 (7)O2—C14—N2—C132.5 (13)
C9—C10—C13—N2171.1 (5)C15—C14—N2—C13178.1 (6)
O2—C14—C15—C16108.2 (9)C10—C13—N2—C14116.8 (7)
N2—C14—C15—C1671.2 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.90 (6)1.94 (6)2.809 (8)163 (5)
C4—H4···Cg10.932.933.628 (8)132
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Central Instrumentation Facility, Queen Mary's College, Chennai-4, for the computing facility and the SAIF, IIT, Madras, for the X-ray data-collection facility.

References

First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMichael, J. P. (2001). The Alkaloids. Chemistry and Biology, Vol. 55, edited by G. A. Cordell, pp. 91–258. New York: Academic Press.  Google Scholar
First citationNalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Japanese Patent No. 74-3987.  Google Scholar
First citationPerumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationPinder, A. R. (1992). Nat. Prod. Rep. 9, 491–504.  CrossRef CAS Web of Science Google Scholar
First citationPrathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39–o40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359–o360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225–312. Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds