organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-[(3-Phenyl-4,5-di­hydro­isoxazol-5-yl)meth­yl]-2H-benzo[b][1,4]thia­zin-3(4H)-one

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: nk_sebbar@yahoo.fr

Edited by J. Simpson, University of Otago, New Zealand (Received 19 June 2016; accepted 21 June 2016; online 24 June 2016)

In the title compound, C18H16N2O2S, the 5-di­hydro­isoxazol-5-yl ring and its phenyl substituent are nearly coplanar, with the largest deviation from the mean plane being 0.0184 (16) Å. The thio­morpholin-3-one ring adopts a screw-boat conformation and the attached benzene ring makes a dihedral angle of 42.26 (7)° with the mean plane through the 3-phenyl-4,5-di­hydro­isoxazol-5-yl ring system. In the crystal, mol­ecules are linked by pairs of C—H⋯N hydrogen bonds, forming inversion dimers. These dimers are linked via C—H⋯O hydrogen bonds, generating a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,4-Benzo­thia­zines are a class of medicinally important heterocyclic compounds which are used extensively in drug design. It is well documented that 1,4-benzo­thia­zin-3-one derivatives possess important pharmacological properties and play a vital role in the treatment of neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease (Shen et al., 1996[Shen, X. M. & Dryhurst, G. (1996). J. Med. Chem. 39, 2018-2029.]). They can also act as calcium channel blockers (Schwarz et al., 1999[Schwarz, M. K., Tumelty, D. & Gallop, M. A. (1999). J. Org. Chem. 64, 2219-2231.]), phospho­diesterase-7 inhibitors (Castro et al., 2001[Castro, A., Abasolo, M. I., Gil, C., Segarra, V. & Martinez, A. (2001). Eur. J. Med. Chem. 36, 333-338.]) and anti­cataract agents (Kawashima et al., 1994[Kawashima, Y., Ota, A. & Mibu, H. (1994). US Patent 5496817; Chem. Abstr. 121, 108814z.]). Isoxazole derivatives represent a unique class of nitro­gen- and oxygen-containing five-membered heterocycles. They are the components of a variety of natural products and medicinally useful compounds (Sperry et al., 2005[Sperry, J. & Wright, D. (2005). Curr. Opin. Drug Discov. Dev. 8, 723-740.]). Isoxazole derivatives with a variety of substituents are known to have various biological activities in both the pharmaceutical and agricultural areas (Lang & Lin, 1984[Lang, A. & Lin, Y. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, pp. 1-130. Oxford: Pergamon Press.]; Boyd, 1991[Boyd, G. V. (1991). Prog. Heterocyl. Chem. 3, 166-185.]).

The present work is a continuation of our investigations of new derivatives of 2H-benzo[b][1,4]thia­zin-3(4H)-one for their biological activities (Sebbar et al., 2014a[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.],b[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o614.]). The nitrile oxide, formed in situ by chlorination of an oxime, reacts with 4-allyl-2H-benzo[b][1,4]thia­zin-3(4H)-one in a biphasic medium (water–chloro­form) at 0°C over 4 h to afford the unique cyclo­adduct 4-((3-phenyl-4,5-di­hydro­isoxazol-5-yl)meth­yl)-2H-benzo[b] [1,4]thia­zin-3(4H)-one.

The mol­ecule of the title compound contains the two fused six-membered rings of the 1,4-benzo­thia­zine unit, linked, through a methyl­ene group, to the 3-phenyl-4,5-di­hydro­isoxazol-5-yl ring system, as shown in Fig. 1[link]. The di­hydro­isoxazole and phenyl rings are almost coplanar, as indicated by the dihedral angle of 1.33 (9)° between their planes. The six-membered heterocycle adopts a screw-boat conformation, as indicated by the total puckering amplitude QT = 0.6390 (2) Å, and a spherical polar angle θ = 65.02 (1)° with φ = 326.38 (2)°. The dihedral angle between the phenyl (C13–C18) and the benzene (C1–C6) rings is 42.42 (9)°. An intra­molecular C5—H5⋯O2 inter­action closes a seven-membered ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radius.

In the crystal, C10—H10⋯N2 hydrogen bonds form inversion dimers, generating R22(8) rings. These dimers are further connected by C2—H2⋯O1 hydrogen bonds, forming a three-dimensional network, Fig. 2[link] and Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯N2i 0.98 2.64 3.405 (2) 136
C2—H2⋯O1ii 0.93 2.64 3.538 (2) 161
C5—H5⋯O2 0.93 2.43 3.135 (2) 132
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Mol­ecules of the title compound linked by C—H⋯N and C—H⋯O hydrogen bonds forming a three-dimensional network. Hydrogen bonds are shown as blue dashed lines.

Synthesis and crystallization

A 24% sodium hypochlorite solution (10 ml) was added dropwise to a solution of 4-allyl-2H-benzo[b][1,4]thia­zin-3(4H)-one (0.5 g, 2.4 mmol) and benzaldoxime (0.52 ml, 4.8 mmol) in chloro­form (30 ml) at 0°C. Stirring was continued for 4 h. The organic layer was dried over Na2SO4 and the solvent was evaporated under reduced pressure. The residue was then purified by column chromatography on silica gel using a mixture of hexa­ne/ethyl acetate (v/v = 90/10) as eluent. Colourless crystals were isolated when the solvent was allowed to evaporate (yield = 38%, m.p. = 408 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H16N2O2S
Mr 324.39
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 11.7526 (3), 10.4082 (3), 25.5656 (7)
V3) 3127.27 (15)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.35 × 0.31 × 0.22
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.626, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 41764, 4391, 2776
Rint 0.049
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.02
No. of reflections 4391
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

4-[(3-Phenyl-4,5-dihydroisoxazol-5-yl)methyl]-2H-benzo[b][1,4]thiazin-3(4H)-one top
Crystal data top
C18H16N2O2SDx = 1.378 Mg m3
Mr = 324.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4391 reflections
a = 11.7526 (3) Åθ = 2.7–29.6°
b = 10.4082 (3) ŵ = 0.22 mm1
c = 25.5656 (7) ÅT = 296 K
V = 3127.27 (15) Å3Block, colourless
Z = 80.35 × 0.31 × 0.22 mm
F(000) = 1360
Data collection top
Bruker X8 APEX
diffractometer
4391 independent reflections
Radiation source: fine-focus sealed tube2776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 29.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.626, Tmax = 0.746k = 1414
41764 measured reflectionsl = 3535
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.5946P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4391 reflectionsΔρmax = 0.18 e Å3
208 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41617 (14)0.54751 (16)0.72451 (6)0.0523 (4)
C20.31872 (17)0.5156 (2)0.75261 (7)0.0697 (5)
H20.30010.56210.78250.084*
C30.25022 (17)0.4171 (2)0.73689 (9)0.0753 (6)
H30.18700.39420.75670.090*
C40.27550 (15)0.3520 (2)0.69163 (9)0.0702 (5)
H40.22860.28530.68060.084*
C50.37013 (13)0.38471 (16)0.66217 (7)0.0542 (4)
H50.38460.34180.63090.065*
C60.44335 (11)0.48065 (14)0.67880 (6)0.0435 (3)
C70.60226 (13)0.62130 (15)0.65330 (6)0.0497 (4)
C80.54562 (16)0.72680 (17)0.68349 (8)0.0663 (5)
H8A0.47890.75630.66460.080*
H8B0.59750.79870.68700.080*
C90.60129 (13)0.40421 (14)0.62058 (6)0.0459 (3)
H9A0.56950.32200.63090.055*
H9B0.68180.40290.62880.055*
C100.58705 (13)0.42034 (16)0.56196 (6)0.0521 (4)
H100.61700.50420.55120.062*
C110.64431 (13)0.31506 (18)0.53054 (6)0.0569 (4)
H11A0.70050.34990.50660.068*
H11B0.68030.25220.55310.068*
C120.54543 (12)0.25839 (15)0.50168 (6)0.0455 (3)
C130.55384 (12)0.15192 (14)0.46429 (6)0.0459 (3)
C140.65787 (14)0.09460 (18)0.45405 (7)0.0585 (4)
H140.72300.12320.47110.070*
C150.66500 (17)0.00510 (19)0.41843 (8)0.0702 (5)
H150.73510.04310.41160.084*
C160.56970 (19)0.04828 (18)0.39314 (8)0.0720 (5)
H160.57540.11470.36890.086*
C170.46626 (18)0.00613 (19)0.40342 (8)0.0728 (5)
H170.40150.02410.38660.087*
C180.45782 (14)0.10545 (18)0.43862 (7)0.0601 (4)
H180.38710.14210.44540.072*
N10.54641 (10)0.50614 (11)0.65117 (5)0.0430 (3)
N20.45035 (11)0.31124 (14)0.51224 (5)0.0527 (3)
O10.69382 (10)0.63712 (12)0.63161 (5)0.0650 (3)
O20.46655 (10)0.41189 (12)0.54839 (4)0.0624 (3)
S10.50438 (4)0.67123 (5)0.74704 (2)0.07191 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0519 (9)0.0552 (9)0.0497 (9)0.0146 (7)0.0002 (7)0.0048 (7)
C20.0669 (11)0.0824 (13)0.0598 (11)0.0234 (11)0.0166 (9)0.0110 (10)
C30.0579 (11)0.0884 (15)0.0797 (13)0.0079 (10)0.0217 (10)0.0245 (12)
C40.0530 (10)0.0714 (12)0.0863 (14)0.0099 (9)0.0019 (9)0.0188 (11)
C50.0497 (8)0.0538 (9)0.0592 (10)0.0013 (7)0.0002 (7)0.0063 (8)
C60.0402 (7)0.0454 (8)0.0450 (8)0.0074 (6)0.0005 (6)0.0080 (6)
C70.0438 (8)0.0533 (9)0.0522 (9)0.0016 (7)0.0074 (7)0.0031 (7)
C80.0650 (11)0.0482 (9)0.0858 (13)0.0028 (8)0.0004 (10)0.0060 (9)
C90.0453 (8)0.0498 (8)0.0425 (8)0.0068 (6)0.0022 (6)0.0007 (6)
C100.0485 (8)0.0642 (10)0.0436 (8)0.0027 (7)0.0028 (7)0.0009 (7)
C110.0413 (8)0.0835 (12)0.0459 (8)0.0013 (8)0.0003 (6)0.0087 (8)
C120.0370 (7)0.0612 (9)0.0383 (7)0.0002 (7)0.0002 (6)0.0100 (7)
C130.0440 (8)0.0540 (9)0.0399 (7)0.0026 (7)0.0017 (6)0.0103 (7)
C140.0474 (9)0.0698 (11)0.0583 (10)0.0009 (8)0.0052 (7)0.0011 (9)
C150.0731 (12)0.0669 (12)0.0707 (12)0.0076 (10)0.0157 (10)0.0000 (10)
C160.0975 (16)0.0535 (10)0.0648 (12)0.0091 (10)0.0013 (11)0.0019 (9)
C170.0792 (13)0.0665 (12)0.0727 (13)0.0157 (10)0.0147 (10)0.0011 (10)
C180.0491 (9)0.0676 (11)0.0637 (11)0.0041 (8)0.0055 (8)0.0050 (9)
N10.0405 (6)0.0449 (7)0.0437 (7)0.0028 (5)0.0012 (5)0.0003 (5)
N20.0446 (7)0.0686 (9)0.0450 (7)0.0067 (6)0.0046 (6)0.0051 (6)
O10.0485 (6)0.0717 (8)0.0748 (8)0.0112 (6)0.0023 (6)0.0029 (6)
O20.0507 (6)0.0866 (9)0.0500 (6)0.0193 (6)0.0083 (5)0.0092 (6)
S10.0788 (3)0.0722 (3)0.0647 (3)0.0081 (2)0.0025 (2)0.0221 (2)
Geometric parameters (Å, º) top
C1—C21.392 (2)C9—H9B0.9700
C1—C61.397 (2)C10—O21.4607 (19)
C1—S11.7506 (18)C10—C111.516 (2)
C2—C31.364 (3)C10—H100.9800
C2—H20.9300C11—C121.498 (2)
C3—C41.373 (3)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.386 (2)C12—N21.2744 (19)
C4—H40.9300C12—C131.467 (2)
C5—C61.385 (2)C13—C141.385 (2)
C5—H50.9300C13—C181.392 (2)
C6—N11.4271 (18)C14—C151.383 (3)
C7—O11.2217 (19)C14—H140.9300
C7—N11.3677 (19)C15—C161.369 (3)
C7—C81.498 (2)C15—H150.9300
C8—S11.792 (2)C16—C171.367 (3)
C8—H8A0.9700C16—H160.9300
C8—H8B0.9700C17—C181.374 (3)
C9—N11.4673 (18)C17—H170.9300
C9—C101.517 (2)C18—H180.9300
C9—H9A0.9700N2—O21.4098 (18)
C2—C1—C6120.06 (17)O2—C10—H10109.6
C2—C1—S1119.53 (14)C11—C10—H10109.6
C6—C1—S1120.41 (13)C9—C10—H10109.6
C3—C2—C1120.86 (19)C12—C11—C10101.61 (12)
C3—C2—H2119.6C12—C11—H11A111.4
C1—C2—H2119.6C10—C11—H11A111.4
C2—C3—C4119.42 (18)C12—C11—H11B111.4
C2—C3—H3120.3C10—C11—H11B111.4
C4—C3—H3120.3H11A—C11—H11B109.3
C3—C4—C5120.71 (19)N2—C12—C13121.56 (14)
C3—C4—H4119.6N2—C12—C11113.95 (14)
C5—C4—H4119.6C13—C12—C11124.49 (13)
C6—C5—C4120.58 (17)C14—C13—C18118.47 (16)
C6—C5—H5119.7C14—C13—C12120.53 (14)
C4—C5—H5119.7C18—C13—C12121.00 (14)
C5—C6—C1118.28 (14)C15—C14—C13120.06 (17)
C5—C6—N1120.62 (14)C15—C14—H14120.0
C1—C6—N1121.03 (14)C13—C14—H14120.0
O1—C7—N1121.51 (15)C16—C15—C14120.51 (18)
O1—C7—C8121.76 (15)C16—C15—H15119.7
N1—C7—C8116.73 (14)C14—C15—H15119.7
C7—C8—S1110.53 (12)C17—C16—C15120.05 (19)
C7—C8—H8A109.5C17—C16—H16120.0
S1—C8—H8A109.5C15—C16—H16120.0
C7—C8—H8B109.5C16—C17—C18120.13 (18)
S1—C8—H8B109.5C16—C17—H17119.9
H8A—C8—H8B108.1C18—C17—H17119.9
N1—C9—C10113.45 (12)C17—C18—C13120.77 (17)
N1—C9—H9A108.9C17—C18—H18119.6
C10—C9—H9A108.9C13—C18—H18119.6
N1—C9—H9B108.9C7—N1—C6123.40 (12)
C10—C9—H9B108.9C7—N1—C9116.36 (12)
H9A—C9—H9B107.7C6—N1—C9120.16 (12)
O2—C10—C11105.13 (12)C12—N2—O2109.95 (12)
O2—C10—C9109.56 (13)N2—O2—C10109.35 (11)
C11—C10—C9113.23 (13)C1—S1—C895.70 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N2i0.982.643.405 (2)136
C2—H2···O1ii0.932.643.538 (2)161
C5—H5···O20.932.433.135 (2)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y, z+3/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Mohammed V, Rabat, Morocco, for financial support.

References

First citationBoyd, G. V. (1991). Prog. Heterocyl. Chem. 3, 166–185.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCastro, A., Abasolo, M. I., Gil, C., Segarra, V. & Martinez, A. (2001). Eur. J. Med. Chem. 36, 333–338.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKawashima, Y., Ota, A. & Mibu, H. (1994). US Patent 5496817; Chem. Abstr. 121, 108814z.  Google Scholar
First citationLang, A. & Lin, Y. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, pp. 1–130. Oxford: Pergamon Press.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchwarz, M. K., Tumelty, D. & Gallop, M. A. (1999). J. Org. Chem. 64, 2219–2231.  CrossRef CAS Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.  CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o614.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, X. M. & Dryhurst, G. (1996). J. Med. Chem. 39, 2018–2029.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSperry, J. & Wright, D. (2005). Curr. Opin. Drug Discov. Dev. 8, 723–740.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds