organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(2-Oxoprop­yl)-1,3-bis­­(prop-2-yn-1-yl)-2,3,4,5-tetra­hydro-1,5-benzodiazepin-2(1H)-one

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: sebhaoui.jihad@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 16 June 2016; accepted 21 June 2016; online 24 June 2016)

In the title mol­ecule, C18H16N2O2, the seven-membered diazepinone ring adopts a boat conformation. An intra­molecular N—H⋯O hydrogen bond encloses an S(6) ring. The two propynyl substituents each point away from the same face of the benzodiazepinone ring system. In the crystal, C—H⋯O hydrogen bonds form double chains of mol­ecules along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzodiazepine derivatives have been the object of intense investigation in medicinal chemistry because of their remarkable ability to depress activity in the central nervous system and are now one of the most widely prescribed class of psychotropic drugs (Zellou et al., 1998[Zellou, A., Cherrah, Y., Hassar, M. & Essassi, E. M. (1998). Ann. Pharm. Fr. 56, 169-174.], 1999[Zellou, A., Keita, A., Cherrah, Y., Essassi, E. M. & Hassar, M. (1999). Therapie, 54, 645-649.]; Rudolph et al., 1999[Rudolph, U., Crestani, F., Benke, D., Brünig, I., Benson, J. A., Fritschy, J.-M., Martin, J. R., Bluethmann, H. & Möhler, H. (1999). Nature, 401, 796-800.]). The area of biological inter­est of 1,5-benzodiazepine derivatives has been extended to include anti­biotics (Knabe et al., 1995[Knabe, J., Büch, H. P. & Bender, S. (1995). Arch. Pharm. Pharm. Med. Chem. 328, 59-66.]) and the treatment of various diseases such as cancer (Atwal et al., 1987[Atwal, K. S., Bergey, J. L., Hedberg, A. & Moreland, S. (1987). J. Med. Chem. 30, 635-640.]), viral infection (HIV) (Di Braccio et al., 2001[Di Braccio, M., Grossi, G., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935-949.]) and cardiovascular disorders (Claremon et al., 1998[Claremon, D. A., Liverton, N., Smith, G. R. & Selnick, H. G. (1998). US Patent 5 725 171.]

The conformation of the title mol­ecule is partially determined by an intra­molecular N2—H2A⋯O2 hydrogen bond (Table 1[link] and Fig. 1[link]). The heterocyclic ring adopts a boat conformation with puckering parameters Q(2) = 0.899 (1) Å, φ(2) = 206.26 (8)°, Q(3) = 0.261 (1) Å and φ(3) = 303.1 (3)°. The two propynyl substituents, C14—C15—H15 and C17—C18—H18 each point away from the same face of the benzodiazepinone ring system and one of these is involved in C18—H18⋯O2i hydrogen bonds that form C(10) chains along c. Additional weaker C12—H12A⋯O1ii contacts form inversion dimers, enclosing R22(16) rings, and these link adjacent chains to produce a double chain propagating along c, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.939 (18) 1.918 (18) 2.6678 (13) 135.2 (14)
C18—H18⋯O2i 0.95 2.35 3.3012 (16) 178
C12—H12A⋯O1ii 0.98 2.70 3.664 (2) 168
Symmetry codes: (i) x, y, z-1; (ii) -x, -y, -z+1.
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular hydrogen bond is shown as a dotted line.
[Figure 2]
Figure 2
Packing viewed along the a axis.

Synthesis and crystallization

To a solution of (4E)-2-oxo­propyl­idene-1,5-benzodiazepin-2-one (0.01 mol, 2.16 g) in N,N-di­methyl­formamid (60 ml), was added K2CO3 (0.02 mol, 2.76 g), propargyl bromide (0.02 mol, 5,84 g) and tetra n-butyl­ammonium bromide (0.001 mol, 0.321 g). The reaction mixture was stirred at room temperature for 48 h. The solution was filtered and the solvent was removed under reduced pressure. The residue was chromatographed on a silica-gel column using hexane and ethyl acetate (80/20) as eluents. Recrystallization from this solution gave the title compound as a white crystals suitable for X-ray investigation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H16N2O2
Mr 292.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.6905 (2), 9.0249 (3), 10.8240 (3)
α, β, γ (°) 68.803 (1), 78.520 (1), 72.980 (1)
V3) 752.69 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.69
Crystal size (mm) 0.17 × 0.13 × 0.13
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.82, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 5877, 2802, 2554
Rint 0.026
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.05
No. of reflections 2802
No. of parameters 205
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-(2-Oxopropylidene)-1,3-bis(prop-2-yn-1-yl)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one top
Crystal data top
C18H16N2O2Z = 2
Mr = 292.33F(000) = 308
Triclinic, P1Dx = 1.290 Mg m3
a = 8.6905 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.0249 (3) ÅCell parameters from 5019 reflections
c = 10.8240 (3) Åθ = 5.4–72.4°
α = 68.803 (1)°µ = 0.69 mm1
β = 78.520 (1)°T = 150 K
γ = 72.980 (1)°Block, colourless
V = 752.69 (4) Å30.17 × 0.13 × 0.13 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2802 independent reflections
Radiation source: INCOATEC IµS micro–focus source2554 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 5.4°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS, Bruker, 2016)
k = 1111
Tmin = 0.82, Tmax = 0.92l = 1213
5877 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.166P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2802 reflectionsΔρmax = 0.20 e Å3
205 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0185 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29131 (10)0.00462 (10)0.35510 (9)0.0299 (2)
O20.08148 (11)0.34999 (11)0.72733 (8)0.0283 (2)
H2A0.225 (2)0.395 (2)0.5665 (18)0.041 (4)*
N10.44188 (11)0.17555 (12)0.32357 (10)0.0235 (2)
N20.24209 (12)0.37133 (12)0.48668 (10)0.0222 (2)
C10.36309 (13)0.42678 (14)0.38710 (12)0.0220 (3)
C20.39430 (14)0.57554 (15)0.37361 (13)0.0265 (3)
H20.33290.63650.43010.032*
C30.51333 (16)0.63519 (16)0.27926 (14)0.0313 (3)
H30.53390.73610.27160.038*
C40.60277 (16)0.54749 (17)0.19572 (14)0.0345 (3)
H40.68340.58920.12980.041*
C50.57435 (15)0.39900 (17)0.20856 (14)0.0305 (3)
H50.63560.33960.15090.037*
C60.45668 (14)0.33579 (14)0.30532 (12)0.0232 (3)
C70.29822 (14)0.13457 (14)0.33893 (11)0.0221 (3)
C80.14850 (13)0.27376 (14)0.34124 (12)0.0210 (3)
H80.17020.37570.27080.025*
C90.13465 (13)0.29586 (13)0.47525 (12)0.0205 (3)
C100.02525 (13)0.23893 (14)0.57948 (12)0.0224 (3)
H100.04290.18120.56720.027*
C110.00868 (14)0.26233 (14)0.70643 (12)0.0235 (3)
C120.10022 (16)0.17527 (17)0.81733 (13)0.0311 (3)
H12A0.16560.13200.78090.047*
H12B0.17170.25220.86110.047*
H12C0.03450.08480.88240.047*
C130.59039 (15)0.04794 (15)0.31350 (14)0.0289 (3)
H13A0.68250.07670.33290.035*
H13B0.57810.05760.38140.035*
C140.62650 (15)0.02832 (15)0.18111 (14)0.0305 (3)
C150.65303 (19)0.00942 (19)0.07573 (16)0.0421 (4)
H150.67440.00580.00900.050*
C160.00053 (14)0.24122 (15)0.31059 (12)0.0249 (3)
H16A0.00930.12840.36430.030*
H16B0.09940.31850.33410.030*
C170.01388 (14)0.26199 (15)0.16813 (13)0.0271 (3)
C180.03206 (17)0.28788 (17)0.05105 (14)0.0336 (3)
H180.04660.30860.04250.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0299 (5)0.0217 (4)0.0404 (5)0.0055 (3)0.0037 (4)0.0135 (4)
O20.0341 (5)0.0294 (5)0.0250 (5)0.0108 (4)0.0018 (4)0.0113 (4)
N10.0198 (5)0.0203 (5)0.0298 (5)0.0021 (4)0.0012 (4)0.0104 (4)
N20.0231 (5)0.0224 (5)0.0234 (5)0.0063 (4)0.0021 (4)0.0095 (4)
C10.0194 (5)0.0221 (6)0.0241 (6)0.0043 (4)0.0048 (4)0.0062 (5)
C20.0255 (6)0.0227 (6)0.0329 (7)0.0040 (5)0.0076 (5)0.0100 (5)
C30.0299 (6)0.0262 (6)0.0407 (7)0.0117 (5)0.0080 (5)0.0080 (6)
C40.0281 (6)0.0361 (7)0.0388 (7)0.0152 (5)0.0008 (5)0.0079 (6)
C50.0241 (6)0.0327 (7)0.0350 (7)0.0081 (5)0.0022 (5)0.0131 (6)
C60.0201 (5)0.0215 (6)0.0280 (6)0.0042 (4)0.0044 (4)0.0079 (5)
C70.0236 (6)0.0217 (6)0.0216 (6)0.0042 (4)0.0017 (4)0.0091 (5)
C80.0199 (5)0.0207 (6)0.0231 (6)0.0039 (4)0.0027 (4)0.0085 (5)
C90.0194 (5)0.0166 (5)0.0250 (6)0.0001 (4)0.0053 (4)0.0080 (5)
C100.0218 (5)0.0209 (5)0.0251 (6)0.0047 (4)0.0029 (4)0.0082 (5)
C110.0229 (5)0.0207 (6)0.0246 (6)0.0019 (4)0.0048 (4)0.0062 (5)
C120.0325 (7)0.0364 (7)0.0243 (6)0.0128 (5)0.0015 (5)0.0067 (6)
C130.0220 (6)0.0245 (6)0.0373 (7)0.0006 (5)0.0034 (5)0.0114 (5)
C140.0236 (6)0.0235 (6)0.0408 (8)0.0042 (5)0.0050 (5)0.0118 (6)
C150.0430 (8)0.0423 (8)0.0427 (9)0.0178 (7)0.0148 (6)0.0200 (7)
C160.0224 (6)0.0278 (6)0.0270 (6)0.0053 (5)0.0038 (4)0.0119 (5)
C170.0246 (6)0.0283 (6)0.0319 (7)0.0050 (5)0.0058 (5)0.0134 (5)
C180.0370 (7)0.0386 (7)0.0302 (7)0.0101 (6)0.0055 (5)0.0151 (6)
Geometric parameters (Å, º) top
O1—C71.2219 (14)C8—C161.5290 (15)
O2—C111.2478 (15)C8—H81.0000
N1—C71.3662 (15)C9—C101.3713 (17)
N1—C61.4280 (15)C10—C111.4376 (16)
N1—C131.4726 (15)C10—H100.9500
N2—C91.3529 (14)C11—C121.5017 (17)
N2—C11.4088 (15)C12—H12A0.9800
N2—H2A0.939 (18)C12—H12B0.9800
C1—C21.3975 (16)C12—H12C0.9800
C1—C61.4027 (17)C13—C141.4681 (18)
C2—C31.3823 (18)C13—H13A0.9900
C2—H20.9500C13—H13B0.9900
C3—C41.388 (2)C14—C151.182 (2)
C3—H30.9500C15—H150.9500
C4—C51.3862 (19)C16—C171.4685 (17)
C4—H40.9500C16—H16A0.9900
C5—C61.3969 (17)C16—H16B0.9900
C5—H50.9500C17—C181.1888 (19)
C7—C81.5247 (15)C18—H180.9500
C8—C91.5113 (15)
C7—N1—C6124.46 (9)C16—C8—H8108.0
C7—N1—C13116.81 (10)N2—C9—C10122.14 (10)
C6—N1—C13118.50 (9)N2—C9—C8115.06 (10)
C9—N2—C1125.92 (10)C10—C9—C8122.76 (10)
C9—N2—H2A114.6 (11)C9—C10—C11123.22 (10)
C1—N2—H2A119.3 (11)C9—C10—H10118.4
C2—C1—C6119.19 (11)C11—C10—H10118.4
C2—C1—N2118.15 (10)O2—C11—C10122.72 (11)
C6—C1—N2122.61 (10)O2—C11—C12119.61 (11)
C3—C2—C1120.91 (11)C10—C11—C12117.67 (10)
C3—C2—H2119.5C11—C12—H12A109.5
C1—C2—H2119.5C11—C12—H12B109.5
C2—C3—C4119.91 (12)H12A—C12—H12B109.5
C2—C3—H3120.0C11—C12—H12C109.5
C4—C3—H3120.0H12A—C12—H12C109.5
C5—C4—C3119.92 (12)H12B—C12—H12C109.5
C5—C4—H4120.0C14—C13—N1112.32 (10)
C3—C4—H4120.0C14—C13—H13A109.1
C4—C5—C6120.72 (12)N1—C13—H13A109.1
C4—C5—H5119.6C14—C13—H13B109.1
C6—C5—H5119.6N1—C13—H13B109.1
C5—C6—C1119.31 (11)H13A—C13—H13B107.9
C5—C6—N1118.84 (11)C15—C14—C13178.17 (14)
C1—C6—N1121.74 (10)C14—C15—H15180.0
O1—C7—N1122.21 (11)C17—C16—C8109.32 (10)
O1—C7—C8123.08 (10)C17—C16—H16A109.8
N1—C7—C8114.65 (10)C8—C16—H16A109.8
C9—C8—C7105.29 (9)C17—C16—H16B109.8
C9—C8—C16115.45 (9)C8—C16—H16B109.8
C7—C8—C16111.90 (9)H16A—C16—H16B108.3
C9—C8—H8108.0C18—C17—C16174.84 (13)
C7—C8—H8108.0C17—C18—H18180.0
C9—N2—C1—C2141.12 (11)C13—N1—C7—C8176.84 (10)
C9—N2—C1—C641.41 (16)O1—C7—C8—C9103.58 (12)
C6—C1—C2—C31.36 (17)N1—C7—C8—C973.45 (12)
N2—C1—C2—C3178.93 (11)O1—C7—C8—C1622.58 (16)
C1—C2—C3—C40.50 (19)N1—C7—C8—C16160.39 (10)
C2—C3—C4—C51.1 (2)C1—N2—C9—C10176.94 (10)
C3—C4—C5—C60.2 (2)C1—N2—C9—C80.93 (15)
C4—C5—C6—C12.10 (19)C7—C8—C9—N274.96 (11)
C4—C5—C6—N1174.11 (11)C16—C8—C9—N2161.10 (10)
C2—C1—C6—C52.63 (17)C7—C8—C9—C10102.89 (12)
N2—C1—C6—C5179.92 (11)C16—C8—C9—C1021.05 (15)
C2—C1—C6—N1173.46 (10)N2—C9—C10—C113.68 (17)
N2—C1—C6—N13.99 (17)C8—C9—C10—C11178.62 (10)
C7—N1—C6—C5136.02 (12)C9—C10—C11—O27.22 (18)
C13—N1—C6—C538.24 (16)C9—C10—C11—C12172.22 (11)
C7—N1—C6—C147.87 (16)C7—N1—C13—C1477.54 (14)
C13—N1—C6—C1137.87 (12)C6—N1—C13—C1497.15 (13)
C6—N1—C7—O1179.55 (11)C9—C8—C16—C17166.39 (10)
C13—N1—C7—O16.11 (17)C7—C8—C16—C1773.20 (12)
C6—N1—C7—C82.49 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.939 (18)1.918 (18)2.6678 (13)135.2 (14)
C18—H18···O2i0.952.353.3012 (16)178
C12—H12A···O1ii0.982.703.664 (2)168
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAtwal, K. S., Bergey, J. L., Hedberg, A. & Moreland, S. (1987). J. Med. Chem. 30, 635–640.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClaremon, D. A., Liverton, N., Smith, G. R. & Selnick, H. G. (1998). US Patent 5 725 171.  Google Scholar
First citationDi Braccio, M., Grossi, G., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935–949.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnabe, J., Büch, H. P. & Bender, S. (1995). Arch. Pharm. Pharm. Med. Chem. 328, 59–66.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRudolph, U., Crestani, F., Benke, D., Brünig, I., Benson, J. A., Fritschy, J.-M., Martin, J. R., Bluethmann, H. & Möhler, H. (1999). Nature, 401, 796–800.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZellou, A., Cherrah, Y., Hassar, M. & Essassi, E. M. (1998). Ann. Pharm. Fr. 56, 169–174.  CAS PubMed Google Scholar
First citationZellou, A., Keita, A., Cherrah, Y., Essassi, E. M. & Hassar, M. (1999). Therapie, 54, 645–649.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds