organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Methyl-5-nitro-3-phenyl-1H-indazole

aLaboratoire de Chimie Organique Heterocyclique URAC 21, Pôle de Compétences Pharmacochimie Faculté des Sciences, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, bInstitut de Chimie Organique et Analytique (ICOA), Université d'Orleans, UMR CNRS 7311, BP 6759, 45067 Orléans Cedex 2, France, and cLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: naas_m21@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 11 June 2016; accepted 14 June 2016; online 24 June 2016)

The title compound, C14H11N3O2, crystallizes with two mol­ecules in the asymmetric unit. The indazole ring system and the nitro group are nearly coplanar, with the largest deviations from the mean plane being 0.070 (4) Å in one mol­ecule and 0.022 (3) Å in the second. The dihedral angle between the mean plane through the phenyl ring and the mean plane of the indazole ring system is of 23.24 (18)° in the first mol­ecule and 26.87 (18)° in the second. In the crystal, mol­ecules are linked by two C—H⋯O hydrogen bonds, forming linear zigzag tapes running along the c-axis direction, and by ππ stacking of mol­ecules along the b axis, generating a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

3-Substituted indazoles obtained from different cross-coupling reactions are common components of drugs and have been found to be of pharmaceutical inter­est in a variety of therapeutic areas (Cerecetto et al., 2005[Cerecetto, H., Gerpe, A., González, M., Arán, V. J. & de Ocáriz, C. O. (2005). Mini Rev. Med. Chem. 5, 869-878.]; Jennings et al., 2007[Jennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829-1838.]; Sun et al., 1997[Sun, J. H., Teleha, C. A., Yan, J. S., Rodgers, J. D. & Nugiel, D. A. (1997). J. Org. Chem. 62, 5627-5629.], Bouissane et al., 2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]; Naas et al., 2014[Naas, M., El Kazzouli, S. E. M., Essassi, el M., Bousmina, M. & Guillaumet, G. (2014). J. Org. Chem. 79, 7286-7293.]). They frequently comprise the core frame of numerous pharmaceutically active compounds, such as Lonidamine [1-(2,4-di­chloro­benz­yl)-1H-indazole-3-carb­oxy­lic acid] and Granisetron {1-methyl-N-[(1R,3R,5S)-9-methyl-9-aza­bicyclo­[3.3.1]nonan-3-yl]-1H-indazole-3-carboxamide}. The present paper is a continuation of our research work devoted to the development of the indazole derivatives with potential pharmacological activities (El Brahmi et al., 2011[El Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & Ng, S. W. (2011). Acta Cryst. E67, o3260.]; El Brahmi et al., 2012[El Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & El Ammari, L. (2012). Acta Cryst. E68, o3368.]).

The asymmetric unit of the title compound is built up from two independent mol­ecules with different orientations, Fig. 1[link]. The two fused five- and six-membered ring systems in each mol­ecule are almost planar, with a maximum deviation of 0.018 (4) Å for C7 in the first mol­ecule (N1,N2,N3,O1,O2,C1–C14) and 0.022 (3) Å for C22 in the second (N4,N5,N6,O3,O4,C15–C28). The dihedral angle between the two phenyl rings is 26.1 (2)°. Moreover, the mean plane of the indazole ring system makes a dihedral angle of 23.24 (18)° with the mean plane through the phenyl ring belonging to the first mol­ecule and 26.87 (18)° in the second mol­ecule. A least-squares overlay of the two mol­ecules (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) is shown in Fig. 2[link] and reveals that the principal difference between the two is the relative inclinations of the C1–C6 and C19–C25 phenyl rings with respect to the planes of the indazole ring systems.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2]
Figure 2
Least-squares fit of the two mol­ecules in the asymmetric unit (one mol­ecule is inverted).

In the crystal, mol­ecules are linked by C19—H19⋯O4 and C14—H14B⋯O2 hydrogen bonds (Table 1[link]), forming linear, zigzag tapes running along the c-axis direction (Fig. 3[link]). In addition, mol­ecules are linked by five ππ stacking inter­actions between the fused rings, Fig. 4[link], with centroid–centroid distances in the range 3.852 (2) to 3.917 (2) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O2i 0.96 2.51 3.395 (6) 154
C19—H19⋯O4ii 0.93 2.46 3.288 (6) 148
Symmetry codes: (i) x, y, z-1; (ii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Packing of the title compound viewed along the b-axis direction showing the C—H⋯O hydrogen bonds.
[Figure 4]
Figure 4
ππ stacking inter­actions viewed along c. Cg1, Cg3, Cg5 and Cg7 are the centroids of the N1/N2/C7/C8/C13, C8–C13, N4/N5/C21/C22/C27 and C22–C27 rings, respectively, with centroids shown as colored spheres and CgCg contacts drawn as green dotted lines.

Synthesis and crystallization

In a 10 ml flask, a solution of phenanthroline (0.048 g, 0.31 mmol) in N,N-di­methyl­acetamide (DMA) (5 ml) was degassed by bubbling argon through the solution, and then palladium acetate (0.045 g, 0.14 mmol) was added. The solution was stirred at room temperature for 3 min, then K2CO3 (0.39 g, 2.1 mmol), 1-methyl-5-nitro-indazole (0.12 g, 0.7 mmol) and iodo­benzene (0.18 g, 0.9 mmol) were successively added. The reaction mixture was heated at reflux under argon for 48 h, and then it was allowed to cool. The mixture was filtered through Celite and the DMA phase was extracted three times with ethyl acetate, dried with magnesium sulfate, and concentrated under reduced pressure. The title compound (m.p. = 396 K; yield = 65%) was purified by flash chromatography on silica gel with a petroleum:ethyl acetate (9:1) solvent system and recrystallized from ethanol to afford colourless crystals of a suitable size for the X-ray diffraction study.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a two-component inversion twin with equal domain ratios.

Table 2
Experimental details

Crystal data
Chemical formula C14H11N3O2
Mr 253.26
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 296
a, b, c (Å) 33.4769 (17), 7.4977 (3), 9.7916 (4)
V3) 2457.69 (19)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.33 × 0.28 × 0.19
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.638, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 13395, 5245, 3328
Rint 0.040
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.130, 1.01
No. of reflections 5245
No. of parameters 344
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.15
Absolute structure Refined as an inversion twin.
Absolute structure parameter 2 (2)
Computer programs: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

1-Methyl-5-nitro-3-phenyl-1H-indazole top
Crystal data top
C14H11N3O2Dx = 1.369 Mg m3
Mr = 253.26Melting point: 396 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
a = 33.4769 (17) ÅCell parameters from 5245 reflections
b = 7.4977 (3) Åθ = 2.4–27.1°
c = 9.7916 (4) ŵ = 0.10 mm1
V = 2457.69 (19) Å3T = 296 K
Z = 8Block, colourless
F(000) = 10560.33 × 0.28 × 0.19 mm
Data collection top
Bruker X8 APEX
diffractometer
5245 independent reflections
Radiation source: fine-focus sealed tube3328 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 27.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3042
Tmin = 0.638, Tmax = 0.746k = 99
13395 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.091P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.16 e Å3
5245 reflectionsΔρmin = 0.15 e Å3
344 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 2 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45757 (13)0.7758 (5)0.8046 (5)0.0631 (11)
H10.44200.71540.74100.076*
C20.49860 (16)0.7540 (6)0.8036 (6)0.0797 (14)
H20.51050.68130.73820.096*
C30.52212 (14)0.8402 (7)0.8998 (6)0.0784 (14)
H30.54970.82470.89980.094*
C40.50432 (14)0.9486 (6)0.9949 (5)0.0708 (13)
H40.52001.00591.05990.085*
C50.46349 (12)0.9737 (5)0.9955 (4)0.0579 (10)
H50.45191.04881.06000.069*
C60.43943 (12)0.8867 (5)0.8996 (4)0.0488 (9)
C70.39618 (12)0.9148 (5)0.8928 (4)0.0477 (9)
C80.36860 (11)0.9732 (4)0.9954 (4)0.0461 (9)
C90.37031 (13)1.0185 (4)1.1343 (4)0.0494 (9)
H90.39421.01381.18270.059*
C100.33550 (14)1.0697 (5)1.1956 (4)0.0544 (10)
C110.29892 (13)1.0770 (6)1.1283 (5)0.0622 (11)
H110.27621.11391.17510.075*
C120.29627 (13)1.0300 (5)0.9938 (5)0.0615 (11)
H120.27201.03320.94730.074*
C130.33147 (11)0.9771 (5)0.9290 (4)0.0496 (9)
C140.30967 (14)0.9067 (6)0.6881 (4)0.0697 (13)
H14A0.28350.93770.72040.105*
H14B0.31720.98600.61550.105*
H14C0.30950.78620.65480.105*
C150.06659 (14)0.6121 (5)0.7116 (5)0.0586 (11)
H150.04430.61020.65510.070*
C160.06358 (16)0.6833 (7)0.8421 (6)0.0804 (14)
H160.03930.72830.87270.096*
C170.09621 (17)0.6875 (7)0.9256 (5)0.0807 (14)
H170.09410.73621.01270.097*
C180.13218 (16)0.6199 (6)0.8814 (4)0.0709 (13)
H180.15440.62330.93840.085*
C190.13518 (14)0.5474 (6)0.7527 (4)0.0582 (11)
H190.15940.50010.72400.070*
C200.10261 (12)0.5436 (5)0.6649 (4)0.0456 (9)
C210.10652 (11)0.4730 (4)0.5262 (4)0.0443 (9)
C220.14088 (11)0.4648 (4)0.4399 (4)0.0439 (8)
C230.18067 (12)0.5160 (5)0.4490 (4)0.0492 (9)
H230.19090.56880.52750.059*
C240.20434 (13)0.4850 (5)0.3366 (5)0.0598 (11)
C250.19033 (17)0.4081 (6)0.2148 (5)0.0700 (13)
H250.20770.38990.14200.084*
C260.15079 (16)0.3597 (5)0.2040 (4)0.0665 (13)
H260.14080.30850.12450.080*
C270.12625 (13)0.3904 (5)0.3168 (4)0.0494 (10)
C280.05914 (16)0.2949 (6)0.2328 (5)0.0824 (15)
H28A0.03310.28630.27330.124*
H28B0.05820.37580.15690.124*
H28C0.06740.17930.20170.124*
N10.37717 (10)0.8847 (4)0.7771 (3)0.0524 (8)
N20.33801 (11)0.9220 (4)0.7986 (3)0.0552 (8)
N30.33657 (14)1.1181 (5)1.3406 (4)0.0670 (11)
N40.07439 (10)0.4110 (4)0.4608 (4)0.0560 (9)
N50.08741 (11)0.3607 (4)0.3338 (4)0.0592 (9)
N60.24577 (14)0.5381 (7)0.3419 (5)0.0853 (13)
O10.36862 (12)1.1219 (5)1.4003 (4)0.0835 (10)
O20.30487 (11)1.1535 (6)1.3978 (4)0.0990 (12)
O30.25797 (11)0.6241 (6)0.4405 (5)0.1101 (14)
O40.26727 (13)0.4964 (8)0.2468 (5)0.146 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.072 (3)0.055 (2)0.062 (3)0.009 (2)0.010 (2)0.001 (2)
C20.077 (3)0.078 (3)0.084 (4)0.024 (3)0.022 (3)0.000 (3)
C30.057 (3)0.092 (4)0.086 (4)0.017 (3)0.004 (3)0.026 (3)
C40.062 (3)0.087 (3)0.063 (3)0.004 (2)0.005 (3)0.017 (3)
C50.060 (3)0.065 (2)0.049 (2)0.007 (2)0.001 (2)0.008 (2)
C60.058 (2)0.047 (2)0.041 (2)0.0032 (17)0.006 (2)0.0099 (17)
C70.057 (2)0.044 (2)0.042 (2)0.0001 (17)0.0033 (19)0.0009 (16)
C80.054 (2)0.0426 (18)0.041 (2)0.0012 (16)0.003 (2)0.0037 (17)
C90.059 (2)0.047 (2)0.042 (2)0.0006 (18)0.0006 (19)0.0036 (17)
C100.067 (3)0.054 (2)0.042 (2)0.0024 (19)0.008 (2)0.0028 (17)
C110.056 (3)0.069 (3)0.061 (3)0.001 (2)0.012 (2)0.001 (2)
C120.053 (2)0.068 (2)0.064 (3)0.003 (2)0.003 (2)0.002 (2)
C130.054 (2)0.049 (2)0.046 (2)0.0069 (17)0.001 (2)0.0020 (18)
C140.080 (3)0.077 (3)0.052 (3)0.010 (2)0.017 (2)0.002 (2)
C150.056 (3)0.057 (2)0.063 (3)0.000 (2)0.011 (2)0.001 (2)
C160.072 (3)0.087 (3)0.082 (4)0.006 (3)0.030 (3)0.018 (3)
C170.105 (4)0.090 (3)0.047 (3)0.009 (3)0.015 (3)0.016 (3)
C180.085 (4)0.090 (3)0.038 (2)0.001 (3)0.000 (2)0.005 (2)
C190.063 (3)0.071 (3)0.041 (2)0.010 (2)0.001 (2)0.0004 (19)
C200.052 (2)0.0429 (19)0.042 (2)0.0002 (16)0.006 (2)0.0039 (16)
C210.052 (2)0.0399 (18)0.041 (2)0.0009 (16)0.0065 (18)0.0026 (15)
C220.054 (2)0.0421 (18)0.035 (2)0.0053 (16)0.0066 (19)0.0015 (15)
C230.057 (2)0.049 (2)0.042 (2)0.0047 (16)0.0013 (19)0.0030 (16)
C240.061 (3)0.066 (2)0.052 (3)0.011 (2)0.014 (2)0.011 (2)
C250.096 (4)0.070 (3)0.043 (3)0.021 (3)0.018 (3)0.002 (2)
C260.106 (4)0.057 (2)0.036 (2)0.012 (2)0.006 (2)0.0059 (18)
C270.070 (3)0.0414 (19)0.036 (2)0.0057 (18)0.006 (2)0.0012 (16)
C280.108 (4)0.074 (3)0.065 (3)0.016 (3)0.044 (3)0.003 (2)
N10.062 (2)0.0530 (18)0.0421 (19)0.0014 (15)0.0003 (18)0.0007 (15)
N20.063 (2)0.0578 (19)0.045 (2)0.0003 (16)0.0072 (18)0.0026 (16)
N30.086 (3)0.068 (2)0.047 (2)0.008 (2)0.021 (2)0.0023 (17)
N40.060 (2)0.0533 (18)0.055 (2)0.0053 (15)0.0106 (18)0.0037 (16)
N50.073 (2)0.0562 (19)0.049 (2)0.0065 (16)0.0162 (19)0.0033 (16)
N60.064 (3)0.122 (4)0.070 (3)0.014 (3)0.010 (3)0.023 (3)
O10.091 (3)0.110 (3)0.0498 (19)0.006 (2)0.004 (2)0.0117 (18)
O20.095 (3)0.143 (3)0.059 (2)0.021 (2)0.029 (2)0.001 (2)
O30.064 (2)0.154 (4)0.113 (4)0.018 (2)0.008 (2)0.001 (3)
O40.085 (3)0.253 (6)0.099 (3)0.024 (3)0.044 (3)0.004 (4)
Geometric parameters (Å, º) top
C1—C21.383 (6)C16—C171.365 (7)
C1—C61.388 (5)C16—H160.9300
C1—H10.9300C17—C181.376 (7)
C2—C31.388 (8)C17—H170.9300
C2—H20.9300C18—C191.377 (6)
C3—C41.372 (7)C18—H180.9300
C3—H30.9300C19—C201.389 (6)
C4—C51.380 (6)C19—H190.9300
C4—H40.9300C20—C211.463 (5)
C5—C61.399 (6)C21—N41.336 (5)
C5—H50.9300C21—C221.429 (5)
C6—C71.465 (5)C22—C231.389 (5)
C7—N11.319 (5)C22—C271.416 (5)
C7—C81.433 (5)C23—C241.376 (6)
C8—C131.403 (5)C23—H230.9300
C8—C91.403 (6)C24—C251.404 (7)
C9—C101.366 (6)C24—N61.444 (6)
C9—H90.9300C25—C261.377 (6)
C10—C111.391 (6)C25—H250.9300
C10—N31.466 (5)C26—C271.396 (6)
C11—C121.367 (7)C26—H260.9300
C11—H110.9300C27—N51.330 (5)
C12—C131.396 (6)C28—N51.455 (5)
C12—H120.9300C28—H28A0.9600
C13—N21.359 (5)C28—H28B0.9600
C14—N21.444 (5)C28—H28C0.9600
C14—H14A0.9600N1—N21.357 (4)
C14—H14B0.9600N3—O11.222 (5)
C14—H14C0.9600N3—O21.229 (4)
C15—C161.388 (7)N4—N51.371 (5)
C15—C201.388 (6)N6—O41.218 (6)
C15—H150.9300N6—O31.231 (6)
C2—C1—C6120.7 (4)C16—C17—H17119.9
C2—C1—H1119.7C18—C17—H17119.9
C6—C1—H1119.7C17—C18—C19119.8 (5)
C1—C2—C3120.2 (5)C17—C18—H18120.1
C1—C2—H2119.9C19—C18—H18120.1
C3—C2—H2119.9C18—C19—C20121.2 (4)
C4—C3—C2119.4 (4)C18—C19—H19119.4
C4—C3—H3120.3C20—C19—H19119.4
C2—C3—H3120.3C15—C20—C19118.0 (4)
C3—C4—C5121.0 (5)C15—C20—C21121.2 (4)
C3—C4—H4119.5C19—C20—C21120.8 (4)
C5—C4—H4119.5N4—C21—C22110.5 (3)
C4—C5—C6120.2 (4)N4—C21—C20120.0 (4)
C4—C5—H5119.9C22—C21—C20129.5 (4)
C6—C5—H5119.9C23—C22—C27119.6 (4)
C1—C6—C5118.5 (4)C23—C22—C21136.3 (3)
C1—C6—C7119.2 (4)C27—C22—C21104.0 (3)
C5—C6—C7122.2 (3)C24—C23—C22117.1 (4)
N1—C7—C8110.1 (3)C24—C23—H23121.5
N1—C7—C6119.4 (3)C22—C23—H23121.5
C8—C7—C6130.5 (4)C23—C24—C25123.8 (4)
C13—C8—C9118.7 (4)C23—C24—N6118.5 (4)
C13—C8—C7104.6 (3)C25—C24—N6117.7 (4)
C9—C8—C7136.6 (4)C26—C25—C24119.7 (4)
C10—C9—C8117.3 (4)C26—C25—H25120.2
C10—C9—H9121.3C24—C25—H25120.2
C8—C9—H9121.3C25—C26—C27117.5 (4)
C9—C10—C11123.6 (4)C25—C26—H26121.3
C9—C10—N3118.3 (4)C27—C26—H26121.3
C11—C10—N3118.0 (4)N5—C27—C26130.3 (4)
C12—C11—C10120.2 (4)N5—C27—C22107.3 (3)
C12—C11—H11119.9C26—C27—C22122.4 (4)
C10—C11—H11119.9N5—C28—H28A109.5
C11—C12—C13117.2 (4)N5—C28—H28B109.5
C11—C12—H12121.4H28A—C28—H28B109.5
C13—C12—H12121.4N5—C28—H28C109.5
N2—C13—C12130.5 (4)H28A—C28—H28C109.5
N2—C13—C8106.6 (4)H28B—C28—H28C109.5
C12—C13—C8122.9 (4)C7—N1—N2107.3 (3)
N2—C14—H14A109.5N1—N2—C13111.4 (3)
N2—C14—H14B109.5N1—N2—C14120.1 (3)
H14A—C14—H14B109.5C13—N2—C14128.5 (4)
N2—C14—H14C109.5O1—N3—O2122.4 (4)
H14A—C14—H14C109.5O1—N3—C10119.4 (4)
H14B—C14—H14C109.5O2—N3—C10118.3 (5)
C16—C15—C20120.6 (5)C21—N4—N5106.0 (3)
C16—C15—H15119.7C27—N5—N4112.2 (3)
C20—C15—H15119.7C27—N5—C28127.5 (4)
C17—C16—C15120.2 (5)N4—N5—C28120.2 (4)
C17—C16—H16119.9O4—N6—O3122.6 (5)
C15—C16—H16119.9O4—N6—C24118.0 (6)
C16—C17—C18120.2 (4)O3—N6—C24119.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.962.513.395 (6)154
C19—H19···O4ii0.932.463.288 (6)148
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat for financial support.

References

First citationBouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCerecetto, H., Gerpe, A., González, M., Arán, V. J. & de Ocáriz, C. O. (2005). Mini Rev. Med. Chem. 5, 869–878.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & El Ammari, L. (2012). Acta Cryst. E68, o3368.  CSD CrossRef IUCr Journals Google Scholar
First citationEl Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & Ng, S. W. (2011). Acta Cryst. E67, o3260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829–1838.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaas, M., El Kazzouli, S. E. M., Essassi, el M., Bousmina, M. & Guillaumet, G. (2014). J. Org. Chem. 79, 7286–7293.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J. H., Teleha, C. A., Yan, J. S., Rodgers, J. D. & Nugiel, D. A. (1997). J. Org. Chem. 62, 5627–5629.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds