organic compounds
1,4-Dihydroxy-2,3-dinitro-9,10-anthraquinone
aDepartment of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
*Correspondence e-mail: kitamura.c@mat.usp.ac.jp
In the title compound, C14H6N2O8, the anthraquinone unit is essentially planar [maximum deviation = 0.0645 (10) Å], and there are two intramolecular O–H⋯O hydrogen bonds forming S(6) motifs. The planes of the two nitro substituents make dihedral angles of 54.77 (8) and 55.60 (3)° with the anthraquinone ring system. In the crystal, molecules are linked by short intermolecular O⋯O contacts, leading to a three-dimensional network structure.
Keywords: crystal structure; anthraquinone; hydrogen bond; short O⋯O contacts.
CCDC reference: 1483502
Structure description
Various kinds of anthraquinone derivatives are manufactured as dyes and pigments. Among them, for example, hydroxyanthraquinones are used as mordant dyes for dyeing cotton. Recently, we have been interested in the effect of substitution of the aromatic ring on optical properties both in solution and in the solid state. We have previously reported several alkoxy-substituted anthraquinones (Kitamura et al. 2015a,b; Ohta et al. 2012a,b). We have also investigated the preparation of anthraquinone derivatives with hydroxyl substituents (Furukawa et al. 2014; Ohira et al. 2016). In this paper we report the treatment of 1,4-dihydroxy-9,10-anthraquinone with fuming HNO3 to give a nitro compound. However, we failed to characterize this product by NMR techniques due to its low solubility. Thus to elucidate the structure of the title compound, an X-ray crystallographic study was carried out.
The molecular structure of the title compound is shown in Fig. 1. The anthraquinone ring is essentially planar [maximum deviation = 0.0645 (10) Å for C13], and there are two intramolecular O—H⋯O hydrogen bonds, each forming an S(6) ring motif (Table 1 and Fig. 1). The nitro group planes make dihedral angles of 54.77 (8) (N1/O5/O6) and 55.60 (3)° (N2/O7/O8) with the anthraquinone ring system.
|
There are not only short intramolecular O⋯O contacts [O1⋯O5 = 2.7960 (12), O2⋯O8 = 2.7833 (12) and O6⋯O7 = 2.9097 (12) Å] but also short intermolecular O⋯O contacts [O1⋯O3i = 2.8305 (11), O5⋯O2i = 2.8369 (11), and O6⋯O4ii = 2.9796 (11) Å; symmetry codes: (i) x, −y + , z + ; (ii) −x + , y − , −z + ] in the crystal (Fig. 2). The latter O⋯O contacts form a three-dimensional network structure. No π–π stacking interactions are observed.
Synthesis and crystallization
A mixture of 1,4-dihydroxy-9,10-anthraquinone (502 mg, 2.09 mmol) and fuming HNO3 (5 ml) was stirred at room temperature for 25 h (Fig. 3). Water (100 ml) was added to the reaction mixture, then the resulting solid was filtered off and dried under vacuum. After on silica gel with an of dichloromethane-hexane (2:1), recrystallization from ethyl acetate (4 ml) afforded the title compound (35 mg, 5% yield) as red single crystals suitable for X-ray diffraction.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1483502
10.1107/S2414314616009068/sj4045sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616009068/sj4045Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616009068/sj4045Isup3.cml
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).C14H6N2O8 | F(000) = 672 |
Mr = 330.21 | Dx = 1.663 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 10510 reflections |
a = 11.7590 (11) Å | θ = 3.1–27.5° |
b = 7.2852 (6) Å | µ = 0.14 mm−1 |
c = 15.9670 (16) Å | T = 200 K |
β = 105.420 (3)° | Prism, red |
V = 1318.6 (2) Å3 | 0.6 × 0.35 × 0.2 mm |
Z = 4 |
Rigaku R-Axis Rapid diffractometer | 3003 independent reflections |
Radiation source: fine-focus sealed x-ray tube | 2637 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 10 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −15→15 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −9→9 |
Tmin = 0.938, Tmax = 0.972 | l = −20→20 |
12217 measured reflections |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: mixed |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.079P)2 + 0.1104P] where P = (Fo2 + 2Fc2)/3 |
3003 reflections | (Δ/σ)max < 0.001 |
225 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All the H atoms except for the OH groups were positioned geometrically and refined using a riding model. The H atoms of the OH groups were located in a difference Fourier map and freely refined [O1—H1 = 0.854 (19) Å; O2—H2 = 0.963 (18) Å]. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.43626 (9) | 0.09726 (13) | 0.18654 (6) | 0.0228 (2) | |
C2 | 0.55559 (8) | 0.11243 (13) | 0.18766 (6) | 0.0226 (2) | |
C3 | 0.59008 (8) | 0.17506 (13) | 0.11682 (6) | 0.0222 (2) | |
C4 | 0.50778 (9) | 0.23341 (13) | 0.04100 (6) | 0.0238 (2) | |
C5 | 0.38757 (8) | 0.22601 (13) | 0.03995 (6) | 0.0226 (2) | |
C6 | 0.29867 (9) | 0.29396 (14) | −0.03798 (6) | 0.0269 (2) | |
C7 | 0.17279 (9) | 0.28732 (14) | −0.03954 (7) | 0.0272 (2) | |
C8 | 0.08861 (10) | 0.34966 (17) | −0.11327 (7) | 0.0361 (3) | |
H8 | 0.1123 | 0.3943 | −0.162 | 0.043* | |
C9 | −0.03031 (10) | 0.34580 (17) | −0.11475 (8) | 0.0406 (3) | |
H9 | −0.0879 | 0.3876 | −0.1648 | 0.049* | |
C10 | −0.06520 (10) | 0.28146 (16) | −0.04380 (8) | 0.0372 (3) | |
H10 | −0.1465 | 0.2814 | −0.0452 | 0.045* | |
C11 | 0.01757 (9) | 0.21716 (14) | 0.02919 (8) | 0.0315 (2) | |
H11 | −0.007 | 0.1719 | 0.0774 | 0.038* | |
C12 | 0.13735 (9) | 0.21906 (13) | 0.03167 (7) | 0.0256 (2) | |
C13 | 0.22486 (9) | 0.14497 (13) | 0.10835 (6) | 0.0241 (2) | |
C14 | 0.35224 (8) | 0.15643 (12) | 0.11118 (6) | 0.0218 (2) | |
N1 | 0.64537 (7) | 0.05360 (13) | 0.26604 (6) | 0.0291 (2) | |
N2 | 0.71694 (7) | 0.19212 (11) | 0.12268 (5) | 0.0252 (2) | |
O1 | 0.40976 (7) | 0.02703 (11) | 0.25620 (5) | 0.0314 (2) | |
O2 | 0.54693 (7) | 0.29723 (12) | −0.02477 (5) | 0.0335 (2) | |
O3 | 0.33025 (7) | 0.35632 (13) | −0.09998 (5) | 0.0401 (2) | |
O4 | 0.19430 (6) | 0.07395 (11) | 0.16893 (5) | 0.0322 (2) | |
O5 | 0.64416 (8) | 0.12276 (16) | 0.33468 (5) | 0.0491 (3) | |
O6 | 0.71535 (7) | −0.06315 (12) | 0.25598 (6) | 0.0403 (2) | |
O7 | 0.77730 (7) | 0.27811 (11) | 0.18428 (5) | 0.0354 (2) | |
O8 | 0.75222 (7) | 0.11905 (13) | 0.06575 (6) | 0.0408 (2) | |
H2 | 0.4783 (17) | 0.333 (3) | −0.0697 (12) | 0.072 (5)* | |
H1 | 0.3344 (17) | 0.027 (3) | 0.2432 (11) | 0.067 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0236 (4) | 0.0244 (4) | 0.0221 (5) | 0.0001 (4) | 0.0091 (4) | 0.0012 (3) |
C2 | 0.0217 (4) | 0.0251 (4) | 0.0204 (4) | 0.0012 (4) | 0.0046 (3) | 0.0006 (3) |
C3 | 0.0193 (4) | 0.0245 (4) | 0.0238 (5) | −0.0006 (4) | 0.0076 (3) | −0.0024 (3) |
C4 | 0.0251 (5) | 0.0279 (4) | 0.0198 (4) | −0.0022 (4) | 0.0086 (4) | −0.0011 (3) |
C5 | 0.0220 (5) | 0.0252 (4) | 0.0206 (4) | −0.0011 (4) | 0.0059 (4) | −0.0014 (3) |
C6 | 0.0271 (5) | 0.0308 (5) | 0.0222 (5) | −0.0010 (4) | 0.0053 (4) | 0.0003 (4) |
C7 | 0.0237 (5) | 0.0280 (5) | 0.0272 (5) | −0.0006 (4) | 0.0020 (4) | −0.0014 (4) |
C8 | 0.0302 (5) | 0.0407 (6) | 0.0324 (6) | 0.0003 (5) | −0.0003 (4) | 0.0032 (5) |
C9 | 0.0280 (5) | 0.0421 (6) | 0.0429 (6) | 0.0021 (5) | −0.0061 (5) | 0.0005 (5) |
C10 | 0.0223 (5) | 0.0353 (6) | 0.0501 (7) | −0.0008 (4) | 0.0027 (5) | −0.0047 (5) |
C11 | 0.0232 (5) | 0.0294 (5) | 0.0414 (6) | −0.0021 (4) | 0.0075 (4) | −0.0035 (4) |
C12 | 0.0218 (5) | 0.0238 (4) | 0.0300 (5) | −0.0014 (4) | 0.0046 (4) | −0.0036 (4) |
C13 | 0.0222 (4) | 0.0235 (4) | 0.0273 (5) | −0.0020 (4) | 0.0077 (4) | −0.0028 (4) |
C14 | 0.0217 (4) | 0.0220 (4) | 0.0224 (5) | −0.0009 (4) | 0.0072 (4) | −0.0012 (3) |
N1 | 0.0230 (4) | 0.0370 (5) | 0.0262 (4) | −0.0006 (4) | 0.0048 (3) | 0.0075 (3) |
N2 | 0.0214 (4) | 0.0270 (4) | 0.0281 (4) | −0.0009 (3) | 0.0085 (3) | 0.0011 (3) |
O1 | 0.0264 (4) | 0.0437 (4) | 0.0261 (4) | 0.0018 (3) | 0.0105 (3) | 0.0114 (3) |
O2 | 0.0285 (4) | 0.0506 (5) | 0.0240 (4) | −0.0017 (3) | 0.0116 (3) | 0.0074 (3) |
O3 | 0.0338 (4) | 0.0614 (6) | 0.0245 (4) | 0.0004 (4) | 0.0066 (3) | 0.0125 (4) |
O4 | 0.0262 (4) | 0.0392 (4) | 0.0332 (4) | −0.0044 (3) | 0.0114 (3) | 0.0049 (3) |
O5 | 0.0399 (5) | 0.0836 (7) | 0.0214 (4) | 0.0060 (5) | 0.0040 (3) | −0.0016 (4) |
O6 | 0.0324 (4) | 0.0363 (4) | 0.0489 (5) | 0.0093 (3) | 0.0052 (4) | 0.0093 (4) |
O7 | 0.0254 (4) | 0.0412 (4) | 0.0371 (4) | −0.0070 (3) | 0.0041 (3) | −0.0054 (3) |
O8 | 0.0313 (4) | 0.0539 (5) | 0.0433 (5) | 0.0014 (4) | 0.0205 (4) | −0.0104 (4) |
C1—O1 | 1.3343 (12) | C8—H8 | 0.95 |
C1—C2 | 1.4028 (13) | C9—C10 | 1.3851 (18) |
C1—C14 | 1.4062 (13) | C9—H9 | 0.95 |
C2—C3 | 1.3770 (13) | C10—C11 | 1.3863 (16) |
C2—N1 | 1.4703 (12) | C10—H10 | 0.95 |
C3—C4 | 1.4000 (13) | C11—C12 | 1.3984 (14) |
C3—N2 | 1.4749 (12) | C11—H11 | 0.95 |
C4—O2 | 1.3372 (12) | C12—C13 | 1.4763 (14) |
C4—C5 | 1.4102 (14) | C13—O4 | 1.2318 (12) |
C5—C14 | 1.4052 (13) | C13—C14 | 1.4887 (13) |
C5—C6 | 1.4815 (14) | N1—O5 | 1.2098 (12) |
C6—O3 | 1.2328 (13) | N1—O6 | 1.2233 (13) |
C6—C7 | 1.4745 (15) | N2—O8 | 1.2176 (11) |
C7—C8 | 1.3973 (15) | N2—O7 | 1.2216 (11) |
C7—C12 | 1.4022 (15) | O1—H1 | 0.854 (19) |
C8—C9 | 1.3925 (17) | O2—H2 | 0.963 (18) |
O1—C1—C2 | 118.30 (8) | C10—C9—H9 | 119.8 |
O1—C1—C14 | 124.34 (9) | C8—C9—H9 | 119.8 |
C2—C1—C14 | 117.37 (8) | C9—C10—C11 | 120.50 (11) |
C3—C2—C1 | 121.85 (8) | C9—C10—H10 | 119.8 |
C3—C2—N1 | 119.60 (8) | C11—C10—H10 | 119.8 |
C1—C2—N1 | 118.51 (8) | C10—C11—C12 | 119.81 (11) |
C2—C3—C4 | 121.61 (8) | C10—C11—H11 | 120.1 |
C2—C3—N2 | 119.32 (8) | C12—C11—H11 | 120.1 |
C4—C3—N2 | 118.96 (8) | C11—C12—C7 | 119.66 (10) |
O2—C4—C3 | 118.79 (9) | C11—C12—C13 | 119.65 (10) |
O2—C4—C5 | 123.87 (9) | C7—C12—C13 | 120.68 (9) |
C3—C4—C5 | 117.32 (9) | O4—C13—C12 | 121.34 (9) |
C14—C5—C4 | 121.02 (9) | O4—C13—C14 | 120.06 (9) |
C14—C5—C6 | 120.39 (9) | C12—C13—C14 | 118.59 (9) |
C4—C5—C6 | 118.58 (9) | C5—C14—C1 | 120.76 (9) |
O3—C6—C7 | 120.92 (9) | C5—C14—C13 | 120.48 (9) |
O3—C6—C5 | 120.11 (9) | C1—C14—C13 | 118.76 (8) |
C7—C6—C5 | 118.96 (9) | O5—N1—O6 | 125.37 (9) |
C8—C7—C12 | 120.12 (10) | O5—N1—C2 | 118.10 (9) |
C8—C7—C6 | 119.12 (10) | O6—N1—C2 | 116.54 (9) |
C12—C7—C6 | 120.76 (9) | O8—N2—O7 | 125.80 (9) |
C9—C8—C7 | 119.40 (11) | O8—N2—C3 | 117.09 (8) |
C9—C8—H8 | 120.3 | O7—N2—C3 | 117.10 (8) |
C7—C8—H8 | 120.3 | C1—O1—H1 | 104.7 (12) |
C10—C9—C8 | 120.50 (11) | C4—O2—H2 | 106.5 (11) |
O1—C1—C2—C3 | 176.79 (9) | C10—C11—C12—C13 | −178.04 (9) |
C14—C1—C2—C3 | −2.76 (14) | C8—C7—C12—C11 | −1.28 (16) |
O1—C1—C2—N1 | −1.16 (14) | C6—C7—C12—C11 | 178.90 (9) |
C14—C1—C2—N1 | 179.29 (8) | C8—C7—C12—C13 | 177.20 (9) |
C1—C2—C3—C4 | 2.42 (15) | C6—C7—C12—C13 | −2.62 (15) |
N1—C2—C3—C4 | −179.65 (9) | C11—C12—C13—O4 | 3.16 (15) |
C1—C2—C3—N2 | 178.55 (8) | C7—C12—C13—O4 | −175.32 (9) |
N1—C2—C3—N2 | −3.52 (14) | C11—C12—C13—C14 | −177.22 (9) |
C2—C3—C4—O2 | 178.29 (9) | C7—C12—C13—C14 | 4.30 (14) |
N2—C3—C4—O2 | 2.15 (14) | C4—C5—C14—C1 | 1.90 (14) |
C2—C3—C4—C5 | 0.15 (14) | C6—C5—C14—C1 | −177.89 (8) |
N2—C3—C4—C5 | −176.00 (8) | C4—C5—C14—C13 | −178.44 (8) |
O2—C4—C5—C14 | 179.70 (9) | C6—C5—C14—C13 | 1.78 (14) |
C3—C4—C5—C14 | −2.26 (14) | O1—C1—C14—C5 | −178.90 (9) |
O2—C4—C5—C6 | −0.51 (15) | C2—C1—C14—C5 | 0.61 (14) |
C3—C4—C5—C6 | 177.53 (8) | O1—C1—C14—C13 | 1.42 (14) |
C14—C5—C6—O3 | 179.38 (9) | C2—C1—C14—C13 | −179.06 (8) |
C4—C5—C6—O3 | −0.42 (15) | O4—C13—C14—C5 | 175.75 (8) |
C14—C5—C6—C7 | −0.01 (14) | C12—C13—C14—C5 | −3.87 (14) |
C4—C5—C6—C7 | −179.80 (8) | O4—C13—C14—C1 | −4.57 (14) |
O3—C6—C7—C8 | 1.22 (16) | C12—C13—C14—C1 | 175.80 (8) |
C5—C6—C7—C8 | −179.39 (9) | C3—C2—N1—O5 | 125.97 (11) |
O3—C6—C7—C12 | −178.95 (10) | C1—C2—N1—O5 | −56.03 (13) |
C5—C6—C7—C12 | 0.43 (15) | C3—C2—N1—O6 | −54.34 (13) |
C12—C7—C8—C9 | 0.94 (17) | C1—C2—N1—O6 | 123.66 (10) |
C6—C7—C8—C9 | −179.24 (10) | C2—C3—N2—O8 | 128.07 (10) |
C7—C8—C9—C10 | 0.23 (19) | C4—C3—N2—O8 | −55.70 (12) |
C8—C9—C10—C11 | −1.06 (18) | C2—C3—N2—O7 | −51.84 (12) |
C9—C10—C11—C12 | 0.71 (17) | C4—C3—N2—O7 | 124.39 (10) |
C10—C11—C12—C7 | 0.46 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4 | 0.854 (19) | 1.788 (18) | 2.5691 (11) | 151.0 (17) |
O2—H2···O3 | 0.963 (18) | 1.686 (19) | 2.5480 (11) | 146.9 (16) |
Acknowledgements
This work was supported financially by JSPS KAKENHI Grant No. 15K05482.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Furukawa, W., Takehara, M., Inoue, Y. & Kitamura, C. (2014). Acta Cryst. E70, o1130. CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K. & Kawase, T. (2015a). Acta Cryst. E71, o504–o505. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015b). Bull. Chem. Soc. Jpn, 88, 713–715. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ohira, N., Takehara, M., Inoue, Y. & Kitamura, C. (2016). IUCrData 1, x160753. Google Scholar
Ohta, A., Hattori, K., Kobayashi, T., Naito, H., Kawase, T. & Kitamura, C. (2012a). Acta Cryst. E68, o2843. CSD CrossRef IUCr Journals Google Scholar
Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012b). Chem. Lett. 41, 674–676. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.