organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,4-Dihy­dr­oxy-2,3-di­nitro-9,10-anthra­quinone

aDepartment of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
*Correspondence e-mail: kitamura.c@mat.usp.ac.jp

Edited by J. Simpson, University of Otago, New Zealand (Received 31 May 2016; accepted 5 June 2016; online 14 June 2016)

In the title compound, C14H6N2O8, the anthra­quinone unit is essentially planar [maximum deviation = 0.0645 (10) Å], and there are two intra­molecular O–H⋯O hydrogen bonds forming S(6) motifs. The planes of the two nitro substituents make dihedral angles of 54.77 (8) and 55.60 (3)° with the anthra­quinone ring system. In the crystal, mol­ecules are linked by short inter­molecular O⋯O contacts, leading to a three-dimensional network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Various kinds of anthra­quinone derivatives are manufactured as dyes and pigments. Among them, for example, hy­droxy­anthra­quinones are used as mordant dyes for dyeing cotton. Recently, we have been inter­ested in the effect of substitution of the aromatic ring on optical properties both in solution and in the solid state. We have previously reported several alk­oxy-substituted anthra­quinones (Kitamura et al. 2015a[Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K. & Kawase, T. (2015a). Acta Cryst. E71, o504-o505.],b[Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015b). Bull. Chem. Soc. Jpn, 88, 713-715.]; Ohta et al. 2012a[Ohta, A., Hattori, K., Kobayashi, T., Naito, H., Kawase, T. & Kitamura, C. (2012a). Acta Cryst. E68, o2843.],b[Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012b). Chem. Lett. 41, 674-676.]). We have also investigated the preparation of anthra­quinone derivatives with hy­droxyl substituents (Furukawa et al. 2014[Furukawa, W., Takehara, M., Inoue, Y. & Kitamura, C. (2014). Acta Cryst. E70, o1130.]; Ohira et al. 2016[Ohira, N., Takehara, M., Inoue, Y. & Kitamura, C. (2016). IUCrData 1, x160753.]). In this paper we report the treatment of 1,4-dihy­droxy-9,10-anthra­quinone with fuming HNO3 to give a nitro compound. However, we failed to characterize this product by NMR techniques due to its low solubility. Thus to elucidate the structure of the title compound, an X-ray crystallographic study was carried out.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The anthra­quinone ring is essentially planar [maximum deviation = 0.0645 (10) Å for C13], and there are two intra­molecular O—H⋯O hydrogen bonds, each forming an S(6) ring motif (Table 1[link] and Fig. 1[link]). The nitro group planes make dihedral angles of 54.77 (8) (N1/O5/O6) and 55.60 (3)° (N2/O7/O8) with the anthra­quinone ring system.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.854 (19) 1.788 (18) 2.5691 (11) 151.0 (17)
O2—H2⋯O3 0.963 (18) 1.686 (19) 2.5480 (11) 146.9 (16)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering and 50% probability displacement ellipsoids. The intra­molecular hydrogen bonds are drawn as dashed lines.

There are not only short intra­molecular O⋯O contacts [O1⋯O5 = 2.7960 (12), O2⋯O8 = 2.7833 (12) and O6⋯O7 = 2.9097 (12) Å] but also short inter­molecular O⋯O contacts [O1⋯O3i = 2.8305 (11), O5⋯O2i = 2.8369 (11), and O6⋯O4ii = 2.9796 (11) Å; symmetry codes: (i) x, −y + [{1\over 2}], z + [{1\over 2}]; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]] in the crystal (Fig. 2[link]). The latter O⋯O contacts form a three-dimensional network structure. No ππ stacking inter­actions are observed.

[Figure 2]
Figure 2
The crystal packing of the title compound. Short O⋯O contacts are shown as blue lines.

Synthesis and crystallization

A mixture of 1,4-dihy­droxy-9,10-anthra­quinone (502 mg, 2.09 mmol) and fuming HNO3 (5 ml) was stirred at room temperature for 25 h (Fig. 3[link]). Water (100 ml) was added to the reaction mixture, then the resulting solid was filtered off and dried under vacuum. After chromatography on silica gel with an eluent of di­chloro­methane-hexane (2:1), recrystallization from ethyl acetate (4 ml) afforded the title compound (35 mg, 5% yield) as red single crystals suitable for X-ray diffraction.

[Figure 3]
Figure 3
The reaction scheme for the synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H6N2O8
Mr 330.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 11.7590 (11), 7.2852 (6), 15.9670 (16)
β (°) 105.420 (3)
V3) 1318.6 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.6 × 0.35 × 0.2
 
Data collection
Diffractometer Rigaku R-Axis Rapid
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.938, 0.972
No. of measured, independent and observed [I > 2σ(I)] reflections 12217, 3003, 2637
Rint 0.017
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.06
No. of reflections 3003
No. of parameters 225
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.38
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

1,4-Dihydroxy-2,3-dinitro-9,10-anthraquinone top
Crystal data top
C14H6N2O8F(000) = 672
Mr = 330.21Dx = 1.663 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10510 reflections
a = 11.7590 (11) Åθ = 3.1–27.5°
b = 7.2852 (6) ŵ = 0.14 mm1
c = 15.9670 (16) ÅT = 200 K
β = 105.420 (3)°Prism, red
V = 1318.6 (2) Å30.6 × 0.35 × 0.2 mm
Z = 4
Data collection top
Rigaku R-Axis Rapid
diffractometer
3003 independent reflections
Radiation source: fine-focus sealed x-ray tube2637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1515
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 99
Tmin = 0.938, Tmax = 0.972l = 2020
12217 measured reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.079P)2 + 0.1104P]
where P = (Fo2 + 2Fc2)/3
3003 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms except for the OH groups were positioned geometrically and refined using a riding model. The H atoms of the OH groups were located in a difference Fourier map and freely refined [O1—H1 = 0.854 (19) Å; O2—H2 = 0.963 (18) Å].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43626 (9)0.09726 (13)0.18654 (6)0.0228 (2)
C20.55559 (8)0.11243 (13)0.18766 (6)0.0226 (2)
C30.59008 (8)0.17506 (13)0.11682 (6)0.0222 (2)
C40.50778 (9)0.23341 (13)0.04100 (6)0.0238 (2)
C50.38757 (8)0.22601 (13)0.03995 (6)0.0226 (2)
C60.29867 (9)0.29396 (14)0.03798 (6)0.0269 (2)
C70.17279 (9)0.28732 (14)0.03954 (7)0.0272 (2)
C80.08861 (10)0.34966 (17)0.11327 (7)0.0361 (3)
H80.11230.39430.1620.043*
C90.03031 (10)0.34580 (17)0.11475 (8)0.0406 (3)
H90.08790.38760.16480.049*
C100.06520 (10)0.28146 (16)0.04380 (8)0.0372 (3)
H100.14650.28140.04520.045*
C110.01757 (9)0.21716 (14)0.02919 (8)0.0315 (2)
H110.0070.17190.07740.038*
C120.13735 (9)0.21906 (13)0.03167 (7)0.0256 (2)
C130.22486 (9)0.14497 (13)0.10835 (6)0.0241 (2)
C140.35224 (8)0.15643 (12)0.11118 (6)0.0218 (2)
N10.64537 (7)0.05360 (13)0.26604 (6)0.0291 (2)
N20.71694 (7)0.19212 (11)0.12268 (5)0.0252 (2)
O10.40976 (7)0.02703 (11)0.25620 (5)0.0314 (2)
O20.54693 (7)0.29723 (12)0.02477 (5)0.0335 (2)
O30.33025 (7)0.35632 (13)0.09998 (5)0.0401 (2)
O40.19430 (6)0.07395 (11)0.16893 (5)0.0322 (2)
O50.64416 (8)0.12276 (16)0.33468 (5)0.0491 (3)
O60.71535 (7)0.06315 (12)0.25598 (6)0.0403 (2)
O70.77730 (7)0.27811 (11)0.18428 (5)0.0354 (2)
O80.75222 (7)0.11905 (13)0.06575 (6)0.0408 (2)
H20.4783 (17)0.333 (3)0.0697 (12)0.072 (5)*
H10.3344 (17)0.027 (3)0.2432 (11)0.067 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0236 (4)0.0244 (4)0.0221 (5)0.0001 (4)0.0091 (4)0.0012 (3)
C20.0217 (4)0.0251 (4)0.0204 (4)0.0012 (4)0.0046 (3)0.0006 (3)
C30.0193 (4)0.0245 (4)0.0238 (5)0.0006 (4)0.0076 (3)0.0024 (3)
C40.0251 (5)0.0279 (4)0.0198 (4)0.0022 (4)0.0086 (4)0.0011 (3)
C50.0220 (5)0.0252 (4)0.0206 (4)0.0011 (4)0.0059 (4)0.0014 (3)
C60.0271 (5)0.0308 (5)0.0222 (5)0.0010 (4)0.0053 (4)0.0003 (4)
C70.0237 (5)0.0280 (5)0.0272 (5)0.0006 (4)0.0020 (4)0.0014 (4)
C80.0302 (5)0.0407 (6)0.0324 (6)0.0003 (5)0.0003 (4)0.0032 (5)
C90.0280 (5)0.0421 (6)0.0429 (6)0.0021 (5)0.0061 (5)0.0005 (5)
C100.0223 (5)0.0353 (6)0.0501 (7)0.0008 (4)0.0027 (5)0.0047 (5)
C110.0232 (5)0.0294 (5)0.0414 (6)0.0021 (4)0.0075 (4)0.0035 (4)
C120.0218 (5)0.0238 (4)0.0300 (5)0.0014 (4)0.0046 (4)0.0036 (4)
C130.0222 (4)0.0235 (4)0.0273 (5)0.0020 (4)0.0077 (4)0.0028 (4)
C140.0217 (4)0.0220 (4)0.0224 (5)0.0009 (4)0.0072 (4)0.0012 (3)
N10.0230 (4)0.0370 (5)0.0262 (4)0.0006 (4)0.0048 (3)0.0075 (3)
N20.0214 (4)0.0270 (4)0.0281 (4)0.0009 (3)0.0085 (3)0.0011 (3)
O10.0264 (4)0.0437 (4)0.0261 (4)0.0018 (3)0.0105 (3)0.0114 (3)
O20.0285 (4)0.0506 (5)0.0240 (4)0.0017 (3)0.0116 (3)0.0074 (3)
O30.0338 (4)0.0614 (6)0.0245 (4)0.0004 (4)0.0066 (3)0.0125 (4)
O40.0262 (4)0.0392 (4)0.0332 (4)0.0044 (3)0.0114 (3)0.0049 (3)
O50.0399 (5)0.0836 (7)0.0214 (4)0.0060 (5)0.0040 (3)0.0016 (4)
O60.0324 (4)0.0363 (4)0.0489 (5)0.0093 (3)0.0052 (4)0.0093 (4)
O70.0254 (4)0.0412 (4)0.0371 (4)0.0070 (3)0.0041 (3)0.0054 (3)
O80.0313 (4)0.0539 (5)0.0433 (5)0.0014 (4)0.0205 (4)0.0104 (4)
Geometric parameters (Å, º) top
C1—O11.3343 (12)C8—H80.95
C1—C21.4028 (13)C9—C101.3851 (18)
C1—C141.4062 (13)C9—H90.95
C2—C31.3770 (13)C10—C111.3863 (16)
C2—N11.4703 (12)C10—H100.95
C3—C41.4000 (13)C11—C121.3984 (14)
C3—N21.4749 (12)C11—H110.95
C4—O21.3372 (12)C12—C131.4763 (14)
C4—C51.4102 (14)C13—O41.2318 (12)
C5—C141.4052 (13)C13—C141.4887 (13)
C5—C61.4815 (14)N1—O51.2098 (12)
C6—O31.2328 (13)N1—O61.2233 (13)
C6—C71.4745 (15)N2—O81.2176 (11)
C7—C81.3973 (15)N2—O71.2216 (11)
C7—C121.4022 (15)O1—H10.854 (19)
C8—C91.3925 (17)O2—H20.963 (18)
O1—C1—C2118.30 (8)C10—C9—H9119.8
O1—C1—C14124.34 (9)C8—C9—H9119.8
C2—C1—C14117.37 (8)C9—C10—C11120.50 (11)
C3—C2—C1121.85 (8)C9—C10—H10119.8
C3—C2—N1119.60 (8)C11—C10—H10119.8
C1—C2—N1118.51 (8)C10—C11—C12119.81 (11)
C2—C3—C4121.61 (8)C10—C11—H11120.1
C2—C3—N2119.32 (8)C12—C11—H11120.1
C4—C3—N2118.96 (8)C11—C12—C7119.66 (10)
O2—C4—C3118.79 (9)C11—C12—C13119.65 (10)
O2—C4—C5123.87 (9)C7—C12—C13120.68 (9)
C3—C4—C5117.32 (9)O4—C13—C12121.34 (9)
C14—C5—C4121.02 (9)O4—C13—C14120.06 (9)
C14—C5—C6120.39 (9)C12—C13—C14118.59 (9)
C4—C5—C6118.58 (9)C5—C14—C1120.76 (9)
O3—C6—C7120.92 (9)C5—C14—C13120.48 (9)
O3—C6—C5120.11 (9)C1—C14—C13118.76 (8)
C7—C6—C5118.96 (9)O5—N1—O6125.37 (9)
C8—C7—C12120.12 (10)O5—N1—C2118.10 (9)
C8—C7—C6119.12 (10)O6—N1—C2116.54 (9)
C12—C7—C6120.76 (9)O8—N2—O7125.80 (9)
C9—C8—C7119.40 (11)O8—N2—C3117.09 (8)
C9—C8—H8120.3O7—N2—C3117.10 (8)
C7—C8—H8120.3C1—O1—H1104.7 (12)
C10—C9—C8120.50 (11)C4—O2—H2106.5 (11)
O1—C1—C2—C3176.79 (9)C10—C11—C12—C13178.04 (9)
C14—C1—C2—C32.76 (14)C8—C7—C12—C111.28 (16)
O1—C1—C2—N11.16 (14)C6—C7—C12—C11178.90 (9)
C14—C1—C2—N1179.29 (8)C8—C7—C12—C13177.20 (9)
C1—C2—C3—C42.42 (15)C6—C7—C12—C132.62 (15)
N1—C2—C3—C4179.65 (9)C11—C12—C13—O43.16 (15)
C1—C2—C3—N2178.55 (8)C7—C12—C13—O4175.32 (9)
N1—C2—C3—N23.52 (14)C11—C12—C13—C14177.22 (9)
C2—C3—C4—O2178.29 (9)C7—C12—C13—C144.30 (14)
N2—C3—C4—O22.15 (14)C4—C5—C14—C11.90 (14)
C2—C3—C4—C50.15 (14)C6—C5—C14—C1177.89 (8)
N2—C3—C4—C5176.00 (8)C4—C5—C14—C13178.44 (8)
O2—C4—C5—C14179.70 (9)C6—C5—C14—C131.78 (14)
C3—C4—C5—C142.26 (14)O1—C1—C14—C5178.90 (9)
O2—C4—C5—C60.51 (15)C2—C1—C14—C50.61 (14)
C3—C4—C5—C6177.53 (8)O1—C1—C14—C131.42 (14)
C14—C5—C6—O3179.38 (9)C2—C1—C14—C13179.06 (8)
C4—C5—C6—O30.42 (15)O4—C13—C14—C5175.75 (8)
C14—C5—C6—C70.01 (14)C12—C13—C14—C53.87 (14)
C4—C5—C6—C7179.80 (8)O4—C13—C14—C14.57 (14)
O3—C6—C7—C81.22 (16)C12—C13—C14—C1175.80 (8)
C5—C6—C7—C8179.39 (9)C3—C2—N1—O5125.97 (11)
O3—C6—C7—C12178.95 (10)C1—C2—N1—O556.03 (13)
C5—C6—C7—C120.43 (15)C3—C2—N1—O654.34 (13)
C12—C7—C8—C90.94 (17)C1—C2—N1—O6123.66 (10)
C6—C7—C8—C9179.24 (10)C2—C3—N2—O8128.07 (10)
C7—C8—C9—C100.23 (19)C4—C3—N2—O855.70 (12)
C8—C9—C10—C111.06 (18)C2—C3—N2—O751.84 (12)
C9—C10—C11—C120.71 (17)C4—C3—N2—O7124.39 (10)
C10—C11—C12—C70.46 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.854 (19)1.788 (18)2.5691 (11)151.0 (17)
O2—H2···O30.963 (18)1.686 (19)2.5480 (11)146.9 (16)
 

Acknowledgements

This work was supported financially by JSPS KAKENHI Grant No. 15K05482.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFurukawa, W., Takehara, M., Inoue, Y. & Kitamura, C. (2014). Acta Cryst. E70, o1130.  CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K. & Kawase, T. (2015a). Acta Cryst. E71, o504–o505.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015b). Bull. Chem. Soc. Jpn, 88, 713–715.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhira, N., Takehara, M., Inoue, Y. & Kitamura, C. (2016). IUCrData 1, x160753.  Google Scholar
First citationOhta, A., Hattori, K., Kobayashi, T., Naito, H., Kawase, T. & Kitamura, C. (2012a). Acta Cryst. E68, o2843.  CSD CrossRef IUCr Journals Google Scholar
First citationOhta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012b). Chem. Lett. 41, 674–676.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds