metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

cis-Di­chlorido­(6,11-di­hydro­dibenzo[b,f][1,4]di­thio­cine-κ2S,S′)palladium(II)

aInstituto de Física, Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, bDepartamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360 México D.F., Mexico, and cFacultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México D.F., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 25 May 2016; accepted 26 May 2016; online 3 June 2016)

In the title compound, [PdCl2(C14H12S2)], the PdII atom features a square-planar coordination to the two S atoms of the di­thio­cine ligand and two Cl ions. The di­thio­cine ligand forms a pair of metallacycle rings, with seven (C4S2Pd) and five (C2S2Pd) members, respectively. The benzylic part of the mol­ecule is oriented away from the Pd atom, as a consequence of the boat conformation adopted by the chelating ligand. The geometry for both S-donor atoms is consistent with sp3 hybridization.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Good quality crystals for X-ray diffraction analysis of the complex [PdCl2(κ2-S2C14H12)] were obtained by slow diffusion of two concentrated solutions of the reactants in CH2Cl2 separated by a phase of pure CH2Cl2, at room temperature (293–298 K). In the complex (Fig. 1[link]), the PdII atom lies at the centre of a slightly distorted square-planar [S2Cl2] donor set, with the 1,4-di­thio­cine ligand coordinating in a bidentate fashion. The asymmetric character of this ligand gives rise to a pair of metallacycle rings with five and seven members. The bond angles at S1 and S4 indicate that these atoms retain a quasi-tetra­hedral hybridization. The Pd—S bond lengths, 2.2638 (8) and 2.2749 (8) Å, are similar to comparable Pd—S distances found in other thio­ether complexes (e.g. Tiburcio et al., 2002[Tiburcio, J., Jones, W. D., Loeb, S. J.. & Torrens, H. (2002). Inorg. Chem. 41, 3779-3785.]). The 6,8,6 system of the di­thio­cine ligand adopts a boat-like conformation, allowing the formation of a weak intra­molecular ππ inter­action, the distance between the centroids of the benzene rings being 3.854 (2) Å. However, these rings are not parallel, and are inclined at a dihedral angle of 46.5 (2)°.

[Figure 1]
Figure 1
The structure of the title compound, with displacement ellipsoids for non-H atoms at the 30% probability level.

The mol­ecules are staggered in the triclinic crystal, so the Cl and S atoms of one mol­ecule are rotated by 180° with respect to the neighbouring mol­ecule, forming centrosymmetric pairs (Fig. 2[link]). The resulting Pd⋯Pd distance is rather short, 3.2234 (5) Å, slightly shorter than twice the van der Waals radius of Pd (3.26 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). Such a short inter­molecular contact is however not exceptional, and Pd⋯Pd separations around 3 Å without any formal σ-bond formation have been reported previously (e.g. Karhu et al., 2016[Karhu, A. J., Pakkanen, O. J., Rautiainen, J. M., Oilunkaniemi, R., Chivers, T. & Laitinen, R. S. (2016). Dalton Trans. 45, 6210-6221.]; Pullen et al., 1998[Pullen, A. E., Faulmann, C., Liu, H.-L., Tanner, D. B., Abboud, K. A. & Reynolds, J. R. (1998). Inorg. Chim. Acta, 282, 90-95.]). The arrangement of the mol­ecules in the crystal avoids the formation of inter­molecular π-stacking in the solid state.

[Figure 2]
Figure 2
Part of the crystal structure, emphasizing short Pd⋯Pd distances (dashed lines). H atoms are omitted for clarity [symmetry code: (i) 1 − x, −y, 1 − z].

Synthesis and crystallization

Unfortunately the title complex is insoluble in all common solvents and decomposes with loss of the ligand in di­methyl­sulfoxide and di­methyl­formamide. Therefore, normal synthesis and recrystallization was not possible. In addition, the insolubility of the complex precluded its characterization by standard NMR techniques.

To overcome this difficulty, we used an alternative method based on the slow diffusion of CH2Cl2 solutions containing each of the reagents, and separated by a phase of pure CH2Cl2. The reaction involves the direct displacement of SMe2 from the complex [PdCl2(SMe2)2] (Jasper et al., 1994[Jasper, S. A., Jones, R. B., Mattern, J., Huffman, J. C. & Todd, L. J. (1994). Inorg. Chem. 33, 5620-5624.]) with the chelating ligand S2C14H12 (Schroth et al., 1964[Schroth, W., Kiessling, W., Peschel, J. & Schmidt Wittenberg, U. (1964). Z. Chem. 4, 302-303.]).

In an H-shaped vessel with the vertical glass tubes open at the upper-ends and connected with a horizontal tube, [PdCl2(SMe2)2] (150 mg, 0.5 mmol) dissolved in 25 ml of CH2Cl2 was placed in one vertical arm, and S2C14H12 (122 mg, 0.5 mmol) dissolved in 25 ml of CH2Cl2 in the other. The top level of both solutions was around 3 cm below the horizontal glass tube. Pure CH2Cl2 was then layered until the solvent level reached one cm above the horizontal glass tube. The system was left aside for 3 days, affording orange crystals suitable for structural studies. Analysis, found: C 39.6, H 2.3, S 15.6%; calculated for C14H12Cl2PdS2: C 39.9, H 2.9, S 15.2%. IR (ν, cm−1): 2944 (m), 1485 (m), 1460 (s), 1237 (m), 779 (s), 668 (s), 326 (s), 295 (m), 287(s).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [PdCl2(C14H12S2)]
Mr 421.66
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 297
a, b, c (Å) 8.1594 (6), 9.2419 (6), 10.4393 (7)
α, β, γ (°) 82.454 (6), 77.443 (6), 82.281 (4)
V3) 757.16 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.84
Crystal size (mm) 0.20 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker P4
Absorption correction ψ scan (XSCANS; Bruker, 1997[Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.304, 0.337
No. of measured, independent and observed [I > 2σ(I)] reflections 4833, 4021, 3154
Rint 0.024
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.03
No. of reflections 4021
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.53
Computer programs: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

cis-Dichlorido(6,11-dihydrodibenzo[b,f][1,4]dithiocine-κ2S,S')palladium(II) top
Crystal data top
[PdCl2(C14H12S2)]Z = 2
Mr = 421.66F(000) = 416
Triclinic, P1Dx = 1.849 Mg m3
a = 8.1594 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2419 (6) ÅCell parameters from 78 reflections
c = 10.4393 (7) Åθ = 4.2–13.0°
α = 82.454 (6)°µ = 1.84 mm1
β = 77.443 (6)°T = 297 K
γ = 82.281 (4)°Prism, orange
V = 757.16 (9) Å30.20 × 0.12 × 0.10 mm
Data collection top
Bruker P4
diffractometer
3154 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 29.0°, θmin = 2.0°
ω scansh = 111
Absorption correction: ψ scan
(XSCANS; Bruker, 1997)
k = 1212
Tmin = 0.304, Tmax = 0.337l = 1414
4833 measured reflections3 standard reflections every 97 reflections
4021 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0264P)2 + 0.1995P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4021 reflectionsΔρmax = 0.48 e Å3
173 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0065 (6)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.35201 (3)0.13119 (2)0.53585 (2)0.03134 (9)
Cl10.53384 (11)0.19942 (9)0.65447 (8)0.04461 (19)
Cl20.22036 (11)0.02243 (9)0.71175 (7)0.04510 (19)
S10.16909 (9)0.09097 (8)0.41133 (7)0.03249 (16)
C20.2749 (4)0.1462 (3)0.2468 (3)0.0325 (6)
C30.3975 (4)0.2410 (3)0.2291 (3)0.0344 (6)
S40.44874 (10)0.30113 (8)0.36954 (7)0.03602 (17)
C50.2777 (4)0.4545 (3)0.4108 (3)0.0423 (7)
H5A0.22180.43510.50230.051*
H5B0.32940.54470.40240.051*
C60.1470 (4)0.4776 (3)0.3273 (3)0.0378 (7)
C70.1456 (5)0.6017 (4)0.2347 (4)0.0501 (8)
H7A0.22660.66610.22590.060*
C80.0265 (6)0.6306 (4)0.1563 (4)0.0635 (11)
H8A0.02620.71460.09650.076*
C90.0912 (5)0.5350 (4)0.1669 (4)0.0631 (11)
H9A0.17000.55330.11270.076*
C100.0943 (4)0.4115 (4)0.2574 (4)0.0497 (8)
H10A0.17530.34780.26340.060*
C110.0223 (4)0.3809 (3)0.3400 (3)0.0370 (6)
C120.0040 (4)0.2501 (3)0.4414 (3)0.0382 (7)
H12A0.10540.21690.44690.046*
H12B0.00450.28120.52650.046*
C130.2340 (5)0.0954 (4)0.1402 (3)0.0434 (7)
H13A0.15160.03160.15260.052*
C140.3192 (5)0.1420 (4)0.0135 (3)0.0530 (9)
H14A0.29390.10880.05950.064*
C150.4399 (5)0.2364 (5)0.0035 (3)0.0564 (10)
H15A0.49530.26690.08850.068*
C160.4815 (5)0.2877 (4)0.1032 (3)0.0483 (8)
H16A0.56360.35180.09060.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03337 (13)0.03475 (13)0.02738 (12)0.00566 (9)0.00776 (8)0.00404 (8)
Cl10.0515 (5)0.0503 (4)0.0394 (4)0.0137 (4)0.0192 (4)0.0062 (3)
Cl20.0531 (5)0.0495 (4)0.0346 (4)0.0177 (4)0.0102 (3)0.0033 (3)
S10.0341 (4)0.0341 (3)0.0307 (3)0.0084 (3)0.0069 (3)0.0035 (3)
C20.0301 (14)0.0380 (14)0.0283 (13)0.0034 (12)0.0066 (11)0.0060 (11)
C30.0327 (15)0.0390 (15)0.0293 (13)0.0003 (12)0.0039 (12)0.0034 (11)
S40.0319 (4)0.0434 (4)0.0340 (4)0.0104 (3)0.0071 (3)0.0017 (3)
C50.0458 (19)0.0360 (15)0.0486 (18)0.0084 (14)0.0117 (15)0.0101 (13)
C60.0365 (16)0.0370 (15)0.0393 (15)0.0033 (13)0.0041 (13)0.0081 (12)
C70.052 (2)0.0377 (17)0.059 (2)0.0087 (16)0.0092 (17)0.0014 (15)
C80.072 (3)0.050 (2)0.068 (3)0.001 (2)0.027 (2)0.0104 (19)
C90.058 (2)0.059 (2)0.075 (3)0.000 (2)0.031 (2)0.007 (2)
C100.0361 (17)0.0513 (19)0.065 (2)0.0034 (15)0.0160 (16)0.0080 (17)
C110.0316 (15)0.0366 (15)0.0426 (16)0.0010 (12)0.0059 (13)0.0087 (12)
C120.0276 (15)0.0435 (16)0.0426 (16)0.0077 (13)0.0001 (13)0.0093 (13)
C130.0475 (19)0.0481 (17)0.0381 (16)0.0024 (15)0.0134 (14)0.0124 (14)
C140.060 (2)0.068 (2)0.0325 (16)0.005 (2)0.0153 (16)0.0127 (16)
C150.057 (2)0.080 (3)0.0262 (15)0.002 (2)0.0005 (15)0.0045 (16)
C160.0433 (19)0.064 (2)0.0342 (16)0.0081 (17)0.0020 (14)0.0008 (15)
Geometric parameters (Å, º) top
Pd1—S42.2638 (8)C7—H7A0.9300
Pd1—S12.2749 (8)C8—C91.367 (6)
Pd1—Cl12.3211 (8)C8—H8A0.9300
Pd1—Cl22.3257 (8)C9—C101.382 (5)
Pd1—Pd1i3.2234 (5)C9—H9A0.9300
S1—C21.789 (3)C10—C111.396 (5)
S1—C121.866 (3)C10—H10A0.9300
C2—C131.383 (4)C11—C121.499 (4)
C2—C31.384 (4)C12—H12A0.9700
C3—C161.386 (4)C12—H12B0.9700
C3—S41.782 (3)C13—C141.395 (5)
S4—C51.873 (3)C13—H13A0.9300
C5—C61.495 (5)C14—C151.371 (5)
C5—H5A0.9700C14—H14A0.9300
C5—H5B0.9700C15—C161.388 (5)
C6—C71.400 (4)C15—H15A0.9300
C6—C111.416 (4)C16—H16A0.9300
C7—C81.380 (5)
S4—Pd1—S186.69 (3)C8—C7—H7A119.3
S4—Pd1—Cl188.30 (3)C6—C7—H7A119.3
S1—Pd1—Cl1173.68 (3)C9—C8—C7119.7 (3)
S4—Pd1—Cl2172.50 (3)C9—C8—H8A120.2
S1—Pd1—Cl290.62 (3)C7—C8—H8A120.2
Cl1—Pd1—Cl293.88 (3)C8—C9—C10120.6 (4)
S4—Pd1—Pd1i97.81 (2)C8—C9—H9A119.7
S1—Pd1—Pd1i100.64 (2)C10—C9—H9A119.7
Cl1—Pd1—Pd1i83.85 (2)C9—C10—C11121.1 (4)
Cl2—Pd1—Pd1i89.56 (2)C9—C10—H10A119.5
C2—S1—C12100.75 (13)C11—C10—H10A119.5
C2—S1—Pd1103.05 (10)C10—C11—C6118.6 (3)
C12—S1—Pd1101.42 (10)C10—C11—C12117.9 (3)
C13—C2—C3121.1 (3)C6—C11—C12123.5 (3)
C13—C2—S1120.4 (2)C11—C12—S1115.9 (2)
C3—C2—S1118.5 (2)C11—C12—H12A108.3
C2—C3—C16120.4 (3)S1—C12—H12A108.3
C2—C3—S4119.5 (2)C11—C12—H12B108.3
C16—C3—S4120.1 (3)S1—C12—H12B108.3
C3—S4—C5102.25 (14)H12A—C12—H12B107.4
C3—S4—Pd1103.28 (10)C2—C13—C14118.5 (3)
C5—S4—Pd198.12 (11)C2—C13—H13A120.8
C6—C5—S4115.1 (2)C14—C13—H13A120.8
C6—C5—H5A108.5C15—C14—C13120.2 (3)
S4—C5—H5A108.5C15—C14—H14A119.9
C6—C5—H5B108.5C13—C14—H14A119.9
S4—C5—H5B108.5C14—C15—C16121.5 (3)
H5A—C5—H5B107.5C14—C15—H15A119.3
C7—C6—C11118.6 (3)C16—C15—H15A119.3
C7—C6—C5118.6 (3)C3—C16—C15118.3 (3)
C11—C6—C5122.7 (3)C3—C16—H16A120.8
C8—C7—C6121.4 (3)C15—C16—H16A120.8
C12—S1—C2—C1396.8 (3)C7—C8—C9—C101.4 (7)
Pd1—S1—C2—C13158.7 (2)C8—C9—C10—C110.1 (6)
C12—S1—C2—C382.9 (2)C9—C10—C11—C61.4 (5)
Pd1—S1—C2—C321.6 (2)C9—C10—C11—C12176.2 (3)
C13—C2—C3—C160.3 (5)C7—C6—C11—C101.6 (5)
S1—C2—C3—C16179.4 (2)C5—C6—C11—C10179.9 (3)
C13—C2—C3—S4178.9 (2)C7—C6—C11—C12175.9 (3)
S1—C2—C3—S41.4 (3)C5—C6—C11—C122.7 (5)
C2—C3—S4—C581.8 (3)C10—C11—C12—S1109.4 (3)
C16—C3—S4—C599.0 (3)C6—C11—C12—S173.1 (3)
C2—C3—S4—Pd119.7 (3)C2—S1—C12—C1110.0 (3)
C16—C3—S4—Pd1159.5 (2)Pd1—S1—C12—C1195.8 (2)
C3—S4—C5—C63.7 (3)C3—C2—C13—C140.1 (5)
Pd1—S4—C5—C6101.9 (2)S1—C2—C13—C14179.7 (2)
S4—C5—C6—C7108.3 (3)C2—C13—C14—C150.3 (5)
S4—C5—C6—C1173.2 (4)C13—C14—C15—C160.3 (6)
C11—C6—C7—C80.3 (5)C2—C3—C16—C150.3 (5)
C5—C6—C7—C8178.9 (3)S4—C3—C16—C15178.9 (3)
C6—C7—C8—C91.2 (6)C14—C15—C16—C30.0 (6)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···Cl1ii0.972.693.654 (3)172
C12—H12A···Cl2iii0.972.963.678 (3)132
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y, z+1.
 

Acknowledgements

JT and HT are grateful for the assistance of DGAPA–UNAM, project IN-202314, and CONACYT, project CB-2012–147498. SB acknowledges support by the Instituto de Física Luis Rivera Terrazas (Puebla, Mexico).

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJasper, S. A., Jones, R. B., Mattern, J., Huffman, J. C. & Todd, L. J. (1994). Inorg. Chem. 33, 5620–5624.  CSD CrossRef CAS Web of Science Google Scholar
First citationKarhu, A. J., Pakkanen, O. J., Rautiainen, J. M., Oilunkaniemi, R., Chivers, T. & Laitinen, R. S. (2016). Dalton Trans. 45, 6210–6221.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPullen, A. E., Faulmann, C., Liu, H.-L., Tanner, D. B., Abboud, K. A. & Reynolds, J. R. (1998). Inorg. Chim. Acta, 282, 90–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchroth, W., Kiessling, W., Peschel, J. & Schmidt Wittenberg, U. (1964). Z. Chem. 4, 302–303.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiburcio, J., Jones, W. D., Loeb, S. J.. & Torrens, H. (2002). Inorg. Chem. 41, 3779–3785.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds