organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,5-Di­bromo-4-methyl­pyridine

aLaboratory of Crystallography, Department of Physics, University of Mentouri Brothers Constantine, 25000 Constantine, Algeria, and bUMR 6226 CNRS University of Rennes 1, 'Chemical Sciences Rennes', Team Systems and Synthetic Condensed, Electroactive, 263 Avenue du General Leclerc, F-35042 Rennes, France
*Correspondence e-mail: medjanimeriem@yahoo.fr

Edited by J. Simpson, University of Otago, New Zealand (Received 24 May 2016; accepted 27 May 2016; online 10 June 2016)

The title compound, C6H5Br2N, lies on a mirror plane. In the crystal, mol­ecules are linked by Br⋯N and Br⋯Br inter­actions, forming zigzag chains along [010]. The chains are linked by offset ππ inter­actions [inter­centroid distance = 3.5451 (3) Å], forming a three-dimensional framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine has been used very frequently as a proton acceptor in studies involving hydrogen-bonded complexes (Zeegers-Huyskens et al., 1981[Zeegers-Huyskens, Th., Huyskens, O., Ratajczak, H. & Orville-Thomas, W. J. (1981). Editors. Molecular Interactions. Vol. 2, p. 1. Chichester: Wiley.]; Gur'yanova et al., 1976[Gur'yanova, E. N., Gol'dshtein, I. P. & Perepelkova, T. I. (1976). Russ. Chem. Rev. 45, 792-806.]). Pyridine derivatives are used as non-linear optical materials (Tomaru et al., 1991[Tomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Ooba, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583-2585.]) and photochemicals (Kaneko et al., 1966[Kaneko, C., Yamada, S., Yokoe, I., Hata, N. & Ubukata, Y. (1966). Tetrahedron Lett. 7, 4729-4733.]). The main use of 4-methyl­pyridine is in the production of the anti-tuberculosis agent, isoniazid (isonicotinic acid hydrazide). Another use of this substance is the production of 4-vinyl­pyridine used in the manufacture of polymers, especially in the production of anion exchangers (Shimizu et al., 2007[Shimizu, S., Watanabe, N., Kataoka, T., Shoji, T., Abe, N., Morishita, S. & Ichimura, H. (2007). Pyridine and Pyridine Derivatives, in Ullmann's Encyclopedia of Industrial Chemistry. New York: John Wiley & Sons.]).

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The mol­ecule is planar, with all atoms, except the methyl H atoms, lying in a mirror plane.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids drawn at the 50% probability level.

In the crystal, mol­ecules are linked by Br⋯N inter­actions [Br3⋯N1i = 3.253 (7) Å; symmetry code: (i) x + [{1\over 2}], −y + [{1\over 2}], −z + [{3\over 2}]], and Br⋯Br halogen bonds [Br3⋯Br5ii = 3.6579 (15) Å; symmetry code: (ii) x + [{1\over 2}], −y + [{1\over 2}], −z + [{5\over 2}]], forming zigzag chains along [010]. These chains are further inter­connected by offset ππ inter­actions [Cg1⋯Cg1iii/iv = 3.5451 (3) Å, Cg1 is the centroid of the pyridine ring N1/C2–C6, inter­planar distance = 3.4594 Å, slippage = 0.775 Å, symmetry codes: (iii) −x + 2, y + [{1\over 2}], −z + 2; (iv) −x + 2, −y + 1, −z + 2], forming a three-dimensional framework (Fig. 2[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis. The Br⋯N and Br⋯Br inter­actions are shown as dashed lines.

Synthesis and crystallization

The commercially available title compound (Sigma–Aldrich) was recrystallized from ethanol solution giving colourless prismatic crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C6H5Br2N
Mr 250.91
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 293
a, b, c (Å) 14.178 (3), 6.9187 (18), 7.6407 (12)
V3) 749.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.72
Crystal size (mm) 0.11 × 0.10 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2013[Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.])
Tmin, Tmax 0.566, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3138, 1228, 650
Rint 0.049
(sin θ/λ)max−1) 0.756
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.125, 1.02
No. of reflections 1289
No. of parameters 55
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.72, −0.83
Computer programs: CrysAlis PRO (Oxford Diffraction, 2013[Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2013); cell refinement: CrysAlis PRO (Oxford Diffraction, 2013); data reduction: CrysAlis PRO (Oxford Diffraction, 2013); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

3,5-Dibromo-4-methylpyridine top
Crystal data top
C6H5Br2NDx = 2.224 Mg m3
Mr = 250.91Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 659 reflections
a = 14.178 (3) Åθ = 4.1–31.1°
b = 6.9187 (18) ŵ = 10.72 mm1
c = 7.6407 (12) ÅT = 293 K
V = 749.5 (3) Å3Prism, colourless
Z = 40.11 × 0.10 × 0.08 mm
F(000) = 472
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1228 independent reflections
Radiation source: Enhance (Mo) X-ray Source650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.0226 pixels mm-1θmax = 32.5°, θmin = 3.0°
CCD rotation images, thin slices ω scansh = 1720
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2013)
k = 89
Tmin = 0.566, Tmax = 1.000l = 1111
3138 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.0979P]
where P = (Fo2 + 2Fc2)/3
1289 reflections(Δ/σ)max < 0.001
55 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.83 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br31.21026 (6)0.250.84557 (11)0.0563 (3)
Br50.91081 (6)0.251.35326 (10)0.0573 (3)
N10.9215 (5)0.250.8206 (8)0.0470 (16)
C41.0582 (5)0.251.0898 (9)0.0364 (15)
C411.1284 (5)0.251.2406 (9)0.0467 (18)
H41A1.09490.251.34970.07*
H41B1.16740.36331.23350.07*0.5
H41C1.16740.13671.23350.07*0.5
C50.9601 (5)0.251.1226 (9)0.0369 (16)
C60.8968 (5)0.250.9855 (11)0.0476 (19)
H60.83270.251.01190.057*
C21.0145 (5)0.250.7880 (9)0.0411 (16)
H21.03440.250.67210.049*
C31.0811 (5)0.250.9163 (9)0.0345 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br30.0359 (5)0.0897 (6)0.0432 (5)00.0061 (4)0
Br50.0448 (5)0.0912 (6)0.0361 (4)00.0069 (4)0
N10.051 (4)0.067 (4)0.024 (3)00.006 (3)0
C40.034 (4)0.051 (4)0.025 (3)00.005 (3)0
C410.032 (4)0.075 (5)0.033 (3)00.011 (3)0
C50.030 (4)0.047 (4)0.034 (3)00.003 (3)0
C60.038 (4)0.058 (4)0.047 (4)00.017 (4)0
C20.041 (4)0.052 (4)0.030 (3)00.001 (3)0
C30.026 (4)0.044 (3)0.033 (4)00.009 (3)0
Geometric parameters (Å, º) top
Br3—C31.909 (7)C4—C51.414 (9)
Br5—C51.896 (7)C4—C411.522 (9)
N1—C61.308 (9)C5—C61.380 (9)
N1—C21.342 (9)C2—C31.362 (10)
C4—C31.365 (8)
C6—N1—C2116.2 (6)C4—C5—Br5121.9 (5)
C3—C4—C5114.0 (6)N1—C6—C5123.9 (7)
C3—C4—C41125.4 (7)N1—C2—C3123.3 (7)
C5—C4—C41120.6 (7)C2—C3—C4122.3 (7)
C6—C5—C4120.4 (7)C2—C3—Br3117.5 (6)
C6—C5—Br5117.8 (6)C4—C3—Br3120.2 (6)
C6—N1—C2—C30.00C2—C3—C4—C41180.00
C2—N1—C6—C50.00C3—C4—C5—Br5180.00
N1—C2—C3—Br3180.00C3—C4—C5—C60.00
N1—C2—C3—C40.00C41—C4—C5—Br50.00
Br3—C3—C4—C5180.00C41—C4—C5—C6180.00
Br3—C3—C4—C410.00Br5—C5—C6—N1180.00
C2—C3—C4—C50.00C4—C5—C6—N10.00
 

Acknowledgements

Thanks are due to MESRS and DG–RSDT (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche – Algérie) for financial support. We would also to thank Mr F. Saidi, Engineer at the Laboratory of Crystallography, University of Mentouri Brothers Constantine, for assistance in collecting data on the Xcalibur X-ray diffractometer.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGur'yanova, E. N., Gol'dshtein, I. P. & Perepelkova, T. I. (1976). Russ. Chem. Rev. 45, 792–806.  Google Scholar
First citationKaneko, C., Yamada, S., Yokoe, I., Hata, N. & Ubukata, Y. (1966). Tetrahedron Lett. 7, 4729–4733.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimizu, S., Watanabe, N., Kataoka, T., Shoji, T., Abe, N., Morishita, S. & Ichimura, H. (2007). Pyridine and Pyridine Derivatives, in Ullmann's Encyclopedia of Industrial Chemistry. New York: John Wiley & Sons.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Ooba, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583–2585.  CrossRef CAS Web of Science Google Scholar
First citationZeegers-Huyskens, Th., Huyskens, O., Ratajczak, H. & Orville-Thomas, W. J. (1981). Editors. Molecular Interactions. Vol. 2, p. 1. Chichester: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds