organic compounds
3,5-Dibromo-4-methylpyridine
aLaboratory of Crystallography, Department of Physics, University of Mentouri Brothers Constantine, 25000 Constantine, Algeria, and bUMR 6226 CNRS University of Rennes 1, 'Chemical Sciences Rennes', Team Systems and Synthetic Condensed, Electroactive, 263 Avenue du General Leclerc, F-35042 Rennes, France
*Correspondence e-mail: medjanimeriem@yahoo.fr
The title compound, C6H5Br2N, lies on a mirror plane. In the crystal, molecules are linked by Br⋯N and Br⋯Br interactions, forming zigzag chains along [010]. The chains are linked by offset π–π interactions [intercentroid distance = 3.5451 (3) Å], forming a three-dimensional framework.
Keywords: crystal structure; pyridine; Br⋯N interactions; halogen bonds; offset π–π interactions; framework structure.
CCDC reference: 1482349
Structure description
Pyridine has been used very frequently as a proton acceptor in studies involving hydrogen-bonded complexes (Zeegers-Huyskens et al., 1981; Gur'yanova et al., 1976). Pyridine derivatives are used as non-linear optical materials (Tomaru et al., 1991) and photochemicals (Kaneko et al., 1966). The main use of 4-methylpyridine is in the production of the anti-tuberculosis agent, isoniazid (isonicotinic acid hydrazide). Another use of this substance is the production of 4-vinylpyridine used in the manufacture of polymers, especially in the production of anion exchangers (Shimizu et al., 2007).
The molecular structure of the title compound is shown in Fig. 1. The molecule is planar, with all atoms, except the methyl H atoms, lying in a mirror plane.
In the crystal, molecules are linked by Br⋯N interactions [Br3⋯N1i = 3.253 (7) Å; symmetry code: (i) x + , −y + , −z + ], and Br⋯Br halogen bonds [Br3⋯Br5ii = 3.6579 (15) Å; symmetry code: (ii) x + , −y + , −z + ], forming zigzag chains along [010]. These chains are further interconnected by offset π–π interactions [Cg1⋯Cg1iii/iv = 3.5451 (3) Å, Cg1 is the centroid of the pyridine ring N1/C2–C6, interplanar distance = 3.4594 Å, slippage = 0.775 Å, symmetry codes: (iii) −x + 2, y + , −z + 2; (iv) −x + 2, −y + 1, −z + 2], forming a three-dimensional framework (Fig. 2).
Synthesis and crystallization
The commercially available title compound (Sigma–Aldrich) was recrystallized from ethanol solution giving colourless prismatic crystals.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1482349
10.1107/S2414314616008592/sj4042sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616008592/sj4042Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616008592/sj4042Isup3.cml
Data collection: CrysAlis PRO (Oxford Diffraction, 2013); cell
CrysAlis PRO (Oxford Diffraction, 2013); data reduction: CrysAlis PRO (Oxford Diffraction, 2013); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).C6H5Br2N | Dx = 2.224 Mg m−3 |
Mr = 250.91 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 659 reflections |
a = 14.178 (3) Å | θ = 4.1–31.1° |
b = 6.9187 (18) Å | µ = 10.72 mm−1 |
c = 7.6407 (12) Å | T = 293 K |
V = 749.5 (3) Å3 | Prism, colourless |
Z = 4 | 0.11 × 0.10 × 0.08 mm |
F(000) = 472 |
Oxford Diffraction Xcalibur Eos diffractometer | 1228 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 650 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 8.0226 pixels mm-1 | θmax = 32.5°, θmin = 3.0° |
CCD rotation images, thin slices ω scans | h = −17→20 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2013) | k = −8→9 |
Tmin = 0.566, Tmax = 1.000 | l = −11→11 |
3138 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0347P)2 + 0.0979P] where P = (Fo2 + 2Fc2)/3 |
1289 reflections | (Δ/σ)max < 0.001 |
55 parameters | Δρmax = 0.72 e Å−3 |
0 restraints | Δρmin = −0.83 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br3 | 1.21026 (6) | 0.25 | 0.84557 (11) | 0.0563 (3) | |
Br5 | 0.91081 (6) | 0.25 | 1.35326 (10) | 0.0573 (3) | |
N1 | 0.9215 (5) | 0.25 | 0.8206 (8) | 0.0470 (16) | |
C4 | 1.0582 (5) | 0.25 | 1.0898 (9) | 0.0364 (15) | |
C41 | 1.1284 (5) | 0.25 | 1.2406 (9) | 0.0467 (18) | |
H41A | 1.0949 | 0.25 | 1.3497 | 0.07* | |
H41B | 1.1674 | 0.3633 | 1.2335 | 0.07* | 0.5 |
H41C | 1.1674 | 0.1367 | 1.2335 | 0.07* | 0.5 |
C5 | 0.9601 (5) | 0.25 | 1.1226 (9) | 0.0369 (16) | |
C6 | 0.8968 (5) | 0.25 | 0.9855 (11) | 0.0476 (19) | |
H6 | 0.8327 | 0.25 | 1.0119 | 0.057* | |
C2 | 1.0145 (5) | 0.25 | 0.7880 (9) | 0.0411 (16) | |
H2 | 1.0344 | 0.25 | 0.6721 | 0.049* | |
C3 | 1.0811 (5) | 0.25 | 0.9163 (9) | 0.0345 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br3 | 0.0359 (5) | 0.0897 (6) | 0.0432 (5) | 0 | 0.0061 (4) | 0 |
Br5 | 0.0448 (5) | 0.0912 (6) | 0.0361 (4) | 0 | 0.0069 (4) | 0 |
N1 | 0.051 (4) | 0.067 (4) | 0.024 (3) | 0 | −0.006 (3) | 0 |
C4 | 0.034 (4) | 0.051 (4) | 0.025 (3) | 0 | −0.005 (3) | 0 |
C41 | 0.032 (4) | 0.075 (5) | 0.033 (3) | 0 | −0.011 (3) | 0 |
C5 | 0.030 (4) | 0.047 (4) | 0.034 (3) | 0 | −0.003 (3) | 0 |
C6 | 0.038 (4) | 0.058 (4) | 0.047 (4) | 0 | −0.017 (4) | 0 |
C2 | 0.041 (4) | 0.052 (4) | 0.030 (3) | 0 | 0.001 (3) | 0 |
C3 | 0.026 (4) | 0.044 (3) | 0.033 (4) | 0 | 0.009 (3) | 0 |
Br3—C3 | 1.909 (7) | C4—C5 | 1.414 (9) |
Br5—C5 | 1.896 (7) | C4—C41 | 1.522 (9) |
N1—C6 | 1.308 (9) | C5—C6 | 1.380 (9) |
N1—C2 | 1.342 (9) | C2—C3 | 1.362 (10) |
C4—C3 | 1.365 (8) | ||
C6—N1—C2 | 116.2 (6) | C4—C5—Br5 | 121.9 (5) |
C3—C4—C5 | 114.0 (6) | N1—C6—C5 | 123.9 (7) |
C3—C4—C41 | 125.4 (7) | N1—C2—C3 | 123.3 (7) |
C5—C4—C41 | 120.6 (7) | C2—C3—C4 | 122.3 (7) |
C6—C5—C4 | 120.4 (7) | C2—C3—Br3 | 117.5 (6) |
C6—C5—Br5 | 117.8 (6) | C4—C3—Br3 | 120.2 (6) |
C6—N1—C2—C3 | 0.00 | C2—C3—C4—C41 | 180.00 |
C2—N1—C6—C5 | 0.00 | C3—C4—C5—Br5 | 180.00 |
N1—C2—C3—Br3 | 180.00 | C3—C4—C5—C6 | 0.00 |
N1—C2—C3—C4 | 0.00 | C41—C4—C5—Br5 | 0.00 |
Br3—C3—C4—C5 | 180.00 | C41—C4—C5—C6 | 180.00 |
Br3—C3—C4—C41 | 0.00 | Br5—C5—C6—N1 | 180.00 |
C2—C3—C4—C5 | 0.00 | C4—C5—C6—N1 | 0.00 |
Acknowledgements
Thanks are due to MESRS and DG–RSDT (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche – Algérie) for financial support. We would also to thank Mr F. Saidi, Engineer at the Laboratory of Crystallography, University of Mentouri Brothers Constantine, for assistance in collecting data on the Xcalibur X-ray diffractometer.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gur'yanova, E. N., Gol'dshtein, I. P. & Perepelkova, T. I. (1976). Russ. Chem. Rev. 45, 792–806. Google Scholar
Kaneko, C., Yamada, S., Yokoe, I., Hata, N. & Ubukata, Y. (1966). Tetrahedron Lett. 7, 4729–4733. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shimizu, S., Watanabe, N., Kataoka, T., Shoji, T., Abe, N., Morishita, S. & Ichimura, H. (2007). Pyridine and Pyridine Derivatives, in Ullmann's Encyclopedia of Industrial Chemistry. New York: John Wiley & Sons. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Ooba, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583–2585. CrossRef CAS Web of Science Google Scholar
Zeegers-Huyskens, Th., Huyskens, O., Ratajczak, H. & Orville-Thomas, W. J. (1981). Editors. Molecular Interactions. Vol. 2, p. 1. Chichester: Wiley. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.