metal-organic compounds
(N-{Amino[(diaminomethylidene)amino]methylidene}-N-methylmethanaminium)tribromidozinc(II)
aResearch Support Network, Instituto Nacional de Ciencias Médicas y Nutrición SZ-Universidad Nacional Autónoma de México (CIC-UNAM), México D.F. Mexico, bFacultad de Química, Universidad, Nacional Autónoma de México, CDMX 04510, Mexico, and cInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, Mexico
*Correspondence e-mail: mfa@unam.mx
In the title compound, [ZnBr3(C4H12N5)], the ZnII cation is tetrahedrally coordinated by three bromide ions and the (N-{amino[(diaminomethylene)amino]methylene}-N-methylmethanaminium) cation that binds through the central N atom. The complex is of interest as a potential antidiabetic drug of the biguanide family. The is stabilized by an extensive series of N—H⋯Br and C—H⋯Br hydrogen bonds, which combine to form a three-dimensional structure.
Keywords: crystal; structure MetforminH+; zinc-complex; hydrogen bonds.
CCDC reference: 1482160
Structure description
The title compound is a complex with a ligand derived from hypoglycaemic agent Metformin, N,N-dimethylimidodicarbonimidic diamide. This has potential applications as an oral antidiabetic drug of the biguanide family (Welton, 1999; Pérez-Fernández et al., 2013). The (Fig. 1) consists of a zinc(II) metal atom, tetrahedrally coordinated to the (N-{amino[(diaminomethylene)amino]methylene}-N-methylmethanaminium) cation (MetforminH+) and three bromide ions. A rearrangement of the protonated Metformin molecule results in the N2 atom carrying a positive charge and the MetforminH+ ligand binds through atom N1. Bond lengths and angles (Table 1) confirm a tetrahedral coordination environment for the zinc(II) atom. The MetforminH+ ligand has two planar segments, N1—C4—N4—N5 and N1—C1—N3—N2—C2—C3 inclined to one another at an angle of 65.5 (9)°.
|
In the F⋯Br1 and N5—H5G⋯Br3 hydrogen bonds, Table 2, form an R22(10) motif while the N3—H3F⋯Br1 and N3—H3G⋯Br1 contacts generate R42(8) rings. Atoms Br2 and Br3 act as bifurcated acceptors, forming N5—H5F⋯Br2 and C3—H3C⋯Br2 together with N4—H4G⋯Br3 and N5—H5G⋯Br3 hydrogen bonds that enclose R21(8) and R21(6) rings, respectively. These numerous interactions combine to produce an infinite three-dimensional network structure (Fig. 2).
N3—H3Synthesis and crystallization
A mixture of ZnBr2 (100 mg, 0.44 mmol) and MetforminH+ hydrochloride (73.61 mg, 0.44 mmol) in 20 ml of an ethanol/water (1:1) solvent mixture was refluxed for 3 h. The resulting solution was evaporated using a rotary evaporator affording a microcrystalline white solid powder that was washed with 20 ml cold ethanol and dried under vacuum to produce the title product in a 52.76% yield, m.p. 170–172°C. CHN analysis: found C: 12.90%; H: 3.17%; N: 17.70%. Calculated, C: 12.29%; H: 3.10%; N: 17.92%. Crystals suitable for analysis by X-ray diffraction were grown from a saturated ethanol solution of the title compound at 4°C.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 1482160
10.1107/S2414314616008555/sj4040sup1.cif
contains datablocks global, I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616008555/sj4040Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXS2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).[ZnBr3(C4H12N5)] | F(000) = 824 |
Mr = 435.29 | Dx = 2.414 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3360 reflections |
a = 12.8934 (9) Å | θ = 3.5–29.5° |
b = 7.6576 (4) Å | µ = 12.03 mm−1 |
c = 13.2374 (9) Å | T = 298 K |
β = 113.580 (8)° | Block, colourless |
V = 1197.83 (15) Å3 | 0.26 × 0.23 × 0.15 mm |
Z = 4 |
Agilent Xcalibur Atlas Gemini diffractometer | 2985 independent reflections |
Graphite monochromator | 2312 reflections with I > 2σ(I) |
Detector resolution: 10.4685 pixels mm-1 | Rint = 0.032 |
ω scans | θmax = 29.5°, θmin = 3.5° |
Absorption correction: analytical (CrysAlis RED; Agilent, 2013) | h = −17→16 |
Tmin = 0.094, Tmax = 0.215 | k = −10→10 |
11024 measured reflections | l = −15→17 |
Refinement on F2 | 6 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.206 | w = 1/[σ2(Fo2) + (0.1109P)2 + 10.4971P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2985 reflections | Δρmax = 2.95 e Å−3 |
138 parameters | Δρmin = −2.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. PROBLEM: Check Calcd Positive Residual Density on Zn1 3.07 eA3 RESPONSE: Residual close to Br1 (0.6 A), possible consequence of an unresolved disorder. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8091 (6) | 0.9864 (9) | 0.6725 (6) | 0.0231 (14) | |
C2 | 0.7232 (9) | 1.0786 (14) | 0.7966 (8) | 0.044 (2) | |
H2A | 0.7472 | 1.0422 | 0.872 | 0.067* | |
H2B | 0.6625 | 1.0051 | 0.7504 | 0.067* | |
H2C | 0.6977 | 1.1975 | 0.7894 | 0.067* | |
C3 | 0.9242 (10) | 1.1520 (14) | 0.8330 (9) | 0.056 (3) | |
H3C | 0.9363 | 1.2516 | 0.795 | 0.085* | |
H3D | 0.9864 | 1.0723 | 0.8501 | 0.085* | |
H3E | 0.9189 | 1.1893 | 0.9 | 0.085* | |
C4 | 0.6535 (7) | 0.9019 (10) | 0.5127 (6) | 0.0259 (15) | |
Br1 | 0.87048 (8) | 0.66446 (14) | 0.87937 (7) | 0.0410 (3) | |
Br2 | 0.77575 (13) | 0.43610 (16) | 0.59611 (10) | 0.0639 (4) | |
Br3 | 0.54231 (9) | 0.58951 (16) | 0.69159 (8) | 0.0485 (3) | |
N1 | 0.7192 (5) | 0.8762 (8) | 0.6202 (5) | 0.0225 (12) | |
N2 | 0.8191 (6) | 1.0647 (9) | 0.7628 (5) | 0.0279 (14) | |
N3 | 0.8886 (7) | 0.9994 (10) | 0.6327 (7) | 0.0356 (16) | |
N4 | 0.5913 (7) | 0.7710 (11) | 0.4543 (6) | 0.0398 (18) | |
N5 | 0.6419 (7) | 1.0577 (10) | 0.4666 (6) | 0.0375 (17) | |
Zn1 | 0.72516 (8) | 0.64108 (11) | 0.70055 (7) | 0.0245 (3) | |
H3F | 0.874 (8) | 0.923 (10) | 0.576 (5) | 0.029* | |
H3G | 0.942 (6) | 1.076 (10) | 0.674 (6) | 0.029* | |
H5F | 0.645 (8) | 1.163 (6) | 0.500 (7) | 0.029* | |
H5G | 0.606 (7) | 1.055 (13) | 0.3919 (19) | 0.029* | |
H4F | 0.617 (8) | 0.663 (6) | 0.483 (7) | 0.029* | |
H4G | 0.547 (7) | 0.808 (12) | 0.385 (3) | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.025 (3) | 0.017 (3) | 0.025 (3) | −0.001 (3) | 0.008 (3) | 0.006 (3) |
C2 | 0.055 (6) | 0.045 (5) | 0.040 (5) | 0.008 (5) | 0.025 (5) | −0.012 (4) |
C3 | 0.055 (6) | 0.040 (5) | 0.045 (6) | −0.017 (5) | −0.010 (5) | −0.015 (4) |
C4 | 0.025 (4) | 0.027 (4) | 0.025 (4) | −0.001 (3) | 0.010 (3) | 0.002 (3) |
Br1 | 0.0369 (5) | 0.0498 (6) | 0.0317 (5) | 0.0027 (4) | 0.0088 (4) | 0.0037 (4) |
Br2 | 0.0919 (10) | 0.0437 (6) | 0.0574 (7) | 0.0084 (6) | 0.0312 (7) | −0.0042 (5) |
Br3 | 0.0416 (6) | 0.0593 (7) | 0.0437 (6) | −0.0129 (5) | 0.0161 (4) | −0.0027 (5) |
N1 | 0.026 (3) | 0.016 (3) | 0.021 (3) | −0.005 (2) | 0.004 (2) | 0.003 (2) |
N2 | 0.032 (3) | 0.024 (3) | 0.022 (3) | −0.003 (3) | 0.005 (3) | −0.005 (3) |
N3 | 0.034 (4) | 0.037 (4) | 0.043 (4) | −0.006 (3) | 0.022 (3) | −0.005 (3) |
N4 | 0.048 (4) | 0.039 (4) | 0.021 (3) | −0.009 (4) | 0.003 (3) | 0.002 (3) |
N5 | 0.047 (4) | 0.030 (4) | 0.024 (3) | 0.004 (3) | 0.002 (3) | 0.006 (3) |
Zn1 | 0.0285 (5) | 0.0213 (4) | 0.0225 (4) | −0.0033 (3) | 0.0089 (4) | 0.0012 (3) |
C1—N2 | 1.297 (10) | C4—N4 | 1.322 (11) |
C1—N3 | 1.330 (10) | C4—N1 | 1.348 (10) |
C1—N1 | 1.376 (9) | Br1—Zn1 | 2.3659 (12) |
C2—N2 | 1.477 (12) | Br2—Zn1 | 2.3499 (15) |
C2—H2A | 0.96 | Br3—Zn1 | 2.3461 (14) |
C2—H2B | 0.96 | N1—Zn1 | 2.077 (6) |
C2—H2C | 0.96 | N3—H3F | 0.91 (2) |
C3—N2 | 1.463 (11) | N3—H3G | 0.91 (2) |
C3—H3C | 0.96 | N4—H4F | 0.91 (2) |
C3—H3D | 0.96 | N4—H4G | 0.92 (2) |
C3—H3E | 0.96 | N5—H5F | 0.91 (2) |
C4—N5 | 1.322 (11) | N5—H5G | 0.91 (2) |
N2—C1—N3 | 121.5 (7) | C1—N1—Zn1 | 115.0 (5) |
N2—C1—N1 | 120.0 (7) | C1—N2—C3 | 121.5 (8) |
N3—C1—N1 | 118.3 (7) | C1—N2—C2 | 121.7 (7) |
N2—C2—H2A | 109.5 | C3—N2—C2 | 116.7 (8) |
N2—C2—H2B | 109.5 | C1—N3—H3F | 110 (6) |
H2A—C2—H2B | 109.5 | C1—N3—H3G | 110 (6) |
N2—C2—H2C | 109.5 | H3F—N3—H3G | 140 (9) |
H2A—C2—H2C | 109.5 | C4—N4—H4F | 114 (6) |
H2B—C2—H2C | 109.5 | C4—N4—H4G | 110 (6) |
N2—C3—H3C | 109.5 | H4F—N4—H4G | 133 (9) |
N2—C3—H3D | 109.5 | C4—N5—H5F | 127 (6) |
H3C—C3—H3D | 109.5 | C4—N5—H5G | 113 (6) |
N2—C3—H3E | 109.5 | H5F—N5—H5G | 117 (9) |
H3C—C3—H3E | 109.5 | N1—Zn1—Br1 | 107.40 (17) |
H3D—C3—H3E | 109.5 | N1—Zn1—Br2 | 103.87 (19) |
N5—C4—N4 | 119.0 (7) | N1—Zn1—Br3 | 106.84 (19) |
N5—C4—N1 | 121.7 (7) | Br3—Zn1—Br1 | 116.16 (5) |
N4—C4—N1 | 119.0 (7) | Br2—Zn1—Br1 | 110.13 (6) |
C4—N1—C1 | 119.3 (6) | Br3—Zn1—Br2 | 111.57 (6) |
C4—N1—Zn1 | 123.1 (5) | ||
N5—C4—N1—C1 | −26.7 (12) | N2—C1—N1—Zn1 | −71.2 (8) |
N4—C4—N1—C1 | 159.3 (8) | N3—C1—N1—Zn1 | 103.8 (7) |
N5—C4—N1—Zn1 | 172.5 (6) | N3—C1—N2—C3 | −8.1 (12) |
N4—C4—N1—Zn1 | −1.5 (11) | N1—C1—N2—C3 | 166.7 (8) |
N2—C1—N1—C4 | 126.5 (8) | N3—C1—N2—C2 | 168.4 (8) |
N3—C1—N1—C4 | −58.5 (10) | N1—C1—N2—C2 | −16.8 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3F···Br1i | 0.91 (2) | 2.67 (5) | 3.500 (8) | 152 (8) |
N3—H3G···Br1ii | 0.91 (2) | 2.85 (8) | 3.416 (7) | 122 (7) |
C3—H3D···Br2ii | 0.96 | 3.04 | 3.959 (13) | 160 |
C3—H3C···Br2iii | 0.96 | 2.98 | 3.665 (12) | 130 |
C2—H2A···Br2iv | 0.96 | 2.84 | 3.747 (10) | 157 |
N5—H5G···Br3i | 0.91 (2) | 2.68 (5) | 3.526 (7) | 155 (8) |
N4—H4G···Br3i | 0.92 (2) | 2.65 (6) | 3.446 (7) | 146 (8) |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+2, y+1/2, −z+3/2; (iii) x, y+1, z; (iv) x, −y+3/2, z+1/2. |
Acknowledgements
The financial support of our research by CONACYT (247089) and PAPIIT (IA202315) is gratefully acknowledged.
References
Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pérez-Fernández, R., Fresno, N., Goya, P., Elguero, J., Menéndez-Taboada, L., García-Granda, S. & Marco, C. (2013). Cryst. Growth Des. 13, 1780–1785. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Welton, T. (1999). Chem. Rev. 99, 2071–2084. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.