metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(N-{Amino­[(di­amino­methyl­­idene)amino]­methyl­­idene}-N-methyl­methanaminium)tri­bromido­zinc(II)

aResearch Support Network, Instituto Nacional de Ciencias Médicas y Nutrición SZ-Universidad Nacional Autónoma de México (CIC-UNAM), México D.F. Mexico, bFacultad de Química, Universidad, Nacional Autónoma de México, CDMX 04510, Mexico, and cInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, Mexico
*Correspondence e-mail: mfa@unam.mx

Edited by J. Simpson, University of Otago, New Zealand (Received 19 May 2016; accepted 26 May 2016; online 3 June 2016)

In the title compound, [ZnBr3(C4H12N5)], the ZnII cation is tetra­hedrally coordinated by three bromide ions and the (N-{amino­[(di­amino­methyl­ene)amino]­methyl­ene}-N-methyl­methanaminium) cation that binds through the central N atom. The complex is of inter­est as a potential anti­diabetic drug of the biguanide family. The crystal structure is stabilized by an extensive series of N—H⋯Br and C—H⋯Br hydrogen bonds, which combine to form a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is a complex with a ligand derived from hypoglycaemic agent Metformin, N,N-di­methyl­imidodicarbonimidic di­amide. This has potential applications as an oral anti­diabetic drug of the biguanide family (Welton, 1999[Welton, T. (1999). Chem. Rev. 99, 2071-2084.]; Pérez-Fernández et al., 2013[Pérez-Fernández, R., Fresno, N., Goya, P., Elguero, J., Menéndez-Taboada, L., García-Granda, S. & Marco, C. (2013). Cryst. Growth Des. 13, 1780-1785.]). The asymmetric unit (Fig. 1[link]) consists of a zinc(II) metal atom, tetra­hedrally coordinated to the (N-{amino­[(di­amino­methyl­ene)amino]­methyl­ene}-N-methyl­methanaminium) cation (MetforminH+) and three bromide ions. A rearrangement of the protonated Metformin mol­ecule results in the N2 atom carrying a positive charge and the MetforminH+ ligand binds through atom N1. Bond lengths and angles (Table 1[link]) confirm a tetra­hedral coordination environment for the zinc(II) atom. The MetforminH+ ligand has two planar segments, N1—C4—N4—N5 and N1—C1—N3—N2—C2—C3 inclined to one another at an angle of 65.5 (9)°.

Table 1
Selected geometric parameters (Å, °)

Br1—Zn1 2.3659 (12) Br3—Zn1 2.3461 (14)
Br2—Zn1 2.3499 (15) N1—Zn1 2.077 (6)
       
N1—Zn1—Br1 107.40 (17) Br3—Zn1—Br1 116.16 (5)
N1—Zn1—Br2 103.87 (19) Br2—Zn1—Br1 110.13 (6)
N1—Zn1—Br3 106.84 (19) Br3—Zn1—Br2 111.57 (6)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.

In the crystal structure, N3—H3F⋯Br1 and N5—H5G⋯Br3 hydrogen bonds, Table 2[link], form an R22(10) motif while the N3—H3F⋯Br1 and N3—H3G⋯Br1 contacts generate R42(8) rings. Atoms Br2 and Br3 act as bifurcated acceptors, forming N5—H5F⋯Br2 and C3—H3C⋯Br2 together with N4—H4G⋯Br3 and N5—H5G⋯Br3 hydrogen bonds that enclose R21(8) and R21(6) rings, respectively. These numerous inter­actions combine to produce an infinite three-dimensional network structure (Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3F⋯Br1i 0.91 (2) 2.67 (5) 3.500 (8) 152 (8)
N3—H3G⋯Br1ii 0.91 (2) 2.85 (8) 3.416 (7) 122 (7)
C3—H3D⋯Br2ii 0.96 3.04 3.959 (13) 160
C3—H3C⋯Br2iii 0.96 2.98 3.665 (12) 130
C2—H2A⋯Br2iv 0.96 2.84 3.747 (10) 157
N5—H5G⋯Br3i 0.91 (2) 2.68 (5) 3.526 (7) 155 (8)
N4—H4G⋯Br3i 0.92 (2) 2.65 (6) 3.446 (7) 146 (8)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal packing of the title compound showing N—H⋯Br hydrogen bonds forming the R22(10), R42(8) and R21(6) ring motifs.

Synthesis and crystallization

A mixture of ZnBr2 (100 mg, 0.44 mmol) and MetforminH+ hydro­chloride (73.61 mg, 0.44 mmol) in 20 ml of an ethanol/water (1:1) solvent mixture was refluxed for 3 h. The resulting solution was evaporated using a rotary evaporator affording a microcrystalline white solid powder that was washed with 20 ml cold ethanol and dried under vacuum to produce the title product in a 52.76% yield, m.p. 170–172°C. CHN analysis: found C: 12.90%; H: 3.17%; N: 17.70%. Calculated, C: 12.29%; H: 3.10%; N: 17.92%. Crystals suitable for analysis by X-ray diffraction were grown from a saturated ethanol solution of the title compound at 4°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [ZnBr3(C4H12N5)]
Mr 435.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 12.8934 (9), 7.6576 (4), 13.2374 (9)
β (°) 113.580 (8)
V3) 1197.83 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 12.03
Crystal size (mm) 0.26 × 0.23 × 0.15
 
Data collection
Diffractometer Agilent Xcalibur Atlas Gemini
Absorption correction Analytical (CrysAlis RED; Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.094, 0.215
No. of measured, independent and observed [I > 2σ(I)] reflections 11024, 2985, 2312
Rint 0.032
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.206, 1.08
No. of reflections 2985
No. of parameters 138
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.95, −2.33
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXS2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXS2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

(N-{Amino[(diaminomethylidene)amino]methylidene}-N-methylmethanaminium)tribromidozinc(II) top
Crystal data top
[ZnBr3(C4H12N5)]F(000) = 824
Mr = 435.29Dx = 2.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3360 reflections
a = 12.8934 (9) Åθ = 3.5–29.5°
b = 7.6576 (4) ŵ = 12.03 mm1
c = 13.2374 (9) ÅT = 298 K
β = 113.580 (8)°Block, colourless
V = 1197.83 (15) Å30.26 × 0.23 × 0.15 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
2985 independent reflections
Graphite monochromator2312 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.032
ω scansθmax = 29.5°, θmin = 3.5°
Absorption correction: analytical
(CrysAlis RED; Agilent, 2013)
h = 1716
Tmin = 0.094, Tmax = 0.215k = 1010
11024 measured reflectionsl = 1517
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.206 w = 1/[σ2(Fo2) + (0.1109P)2 + 10.4971P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2985 reflectionsΔρmax = 2.95 e Å3
138 parametersΔρmin = 2.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. PROBLEM: Check Calcd Positive Residual Density on Zn1 3.07 eA3 RESPONSE: Residual close to Br1 (0.6 A), possible consequence of an unresolved disorder.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8091 (6)0.9864 (9)0.6725 (6)0.0231 (14)
C20.7232 (9)1.0786 (14)0.7966 (8)0.044 (2)
H2A0.74721.04220.8720.067*
H2B0.66251.00510.75040.067*
H2C0.69771.19750.78940.067*
C30.9242 (10)1.1520 (14)0.8330 (9)0.056 (3)
H3C0.93631.25160.7950.085*
H3D0.98641.07230.85010.085*
H3E0.91891.18930.90.085*
C40.6535 (7)0.9019 (10)0.5127 (6)0.0259 (15)
Br10.87048 (8)0.66446 (14)0.87937 (7)0.0410 (3)
Br20.77575 (13)0.43610 (16)0.59611 (10)0.0639 (4)
Br30.54231 (9)0.58951 (16)0.69159 (8)0.0485 (3)
N10.7192 (5)0.8762 (8)0.6202 (5)0.0225 (12)
N20.8191 (6)1.0647 (9)0.7628 (5)0.0279 (14)
N30.8886 (7)0.9994 (10)0.6327 (7)0.0356 (16)
N40.5913 (7)0.7710 (11)0.4543 (6)0.0398 (18)
N50.6419 (7)1.0577 (10)0.4666 (6)0.0375 (17)
Zn10.72516 (8)0.64108 (11)0.70055 (7)0.0245 (3)
H3F0.874 (8)0.923 (10)0.576 (5)0.029*
H3G0.942 (6)1.076 (10)0.674 (6)0.029*
H5F0.645 (8)1.163 (6)0.500 (7)0.029*
H5G0.606 (7)1.055 (13)0.3919 (19)0.029*
H4F0.617 (8)0.663 (6)0.483 (7)0.029*
H4G0.547 (7)0.808 (12)0.385 (3)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.025 (3)0.017 (3)0.025 (3)0.001 (3)0.008 (3)0.006 (3)
C20.055 (6)0.045 (5)0.040 (5)0.008 (5)0.025 (5)0.012 (4)
C30.055 (6)0.040 (5)0.045 (6)0.017 (5)0.010 (5)0.015 (4)
C40.025 (4)0.027 (4)0.025 (4)0.001 (3)0.010 (3)0.002 (3)
Br10.0369 (5)0.0498 (6)0.0317 (5)0.0027 (4)0.0088 (4)0.0037 (4)
Br20.0919 (10)0.0437 (6)0.0574 (7)0.0084 (6)0.0312 (7)0.0042 (5)
Br30.0416 (6)0.0593 (7)0.0437 (6)0.0129 (5)0.0161 (4)0.0027 (5)
N10.026 (3)0.016 (3)0.021 (3)0.005 (2)0.004 (2)0.003 (2)
N20.032 (3)0.024 (3)0.022 (3)0.003 (3)0.005 (3)0.005 (3)
N30.034 (4)0.037 (4)0.043 (4)0.006 (3)0.022 (3)0.005 (3)
N40.048 (4)0.039 (4)0.021 (3)0.009 (4)0.003 (3)0.002 (3)
N50.047 (4)0.030 (4)0.024 (3)0.004 (3)0.002 (3)0.006 (3)
Zn10.0285 (5)0.0213 (4)0.0225 (4)0.0033 (3)0.0089 (4)0.0012 (3)
Geometric parameters (Å, º) top
C1—N21.297 (10)C4—N41.322 (11)
C1—N31.330 (10)C4—N11.348 (10)
C1—N11.376 (9)Br1—Zn12.3659 (12)
C2—N21.477 (12)Br2—Zn12.3499 (15)
C2—H2A0.96Br3—Zn12.3461 (14)
C2—H2B0.96N1—Zn12.077 (6)
C2—H2C0.96N3—H3F0.91 (2)
C3—N21.463 (11)N3—H3G0.91 (2)
C3—H3C0.96N4—H4F0.91 (2)
C3—H3D0.96N4—H4G0.92 (2)
C3—H3E0.96N5—H5F0.91 (2)
C4—N51.322 (11)N5—H5G0.91 (2)
N2—C1—N3121.5 (7)C1—N1—Zn1115.0 (5)
N2—C1—N1120.0 (7)C1—N2—C3121.5 (8)
N3—C1—N1118.3 (7)C1—N2—C2121.7 (7)
N2—C2—H2A109.5C3—N2—C2116.7 (8)
N2—C2—H2B109.5C1—N3—H3F110 (6)
H2A—C2—H2B109.5C1—N3—H3G110 (6)
N2—C2—H2C109.5H3F—N3—H3G140 (9)
H2A—C2—H2C109.5C4—N4—H4F114 (6)
H2B—C2—H2C109.5C4—N4—H4G110 (6)
N2—C3—H3C109.5H4F—N4—H4G133 (9)
N2—C3—H3D109.5C4—N5—H5F127 (6)
H3C—C3—H3D109.5C4—N5—H5G113 (6)
N2—C3—H3E109.5H5F—N5—H5G117 (9)
H3C—C3—H3E109.5N1—Zn1—Br1107.40 (17)
H3D—C3—H3E109.5N1—Zn1—Br2103.87 (19)
N5—C4—N4119.0 (7)N1—Zn1—Br3106.84 (19)
N5—C4—N1121.7 (7)Br3—Zn1—Br1116.16 (5)
N4—C4—N1119.0 (7)Br2—Zn1—Br1110.13 (6)
C4—N1—C1119.3 (6)Br3—Zn1—Br2111.57 (6)
C4—N1—Zn1123.1 (5)
N5—C4—N1—C126.7 (12)N2—C1—N1—Zn171.2 (8)
N4—C4—N1—C1159.3 (8)N3—C1—N1—Zn1103.8 (7)
N5—C4—N1—Zn1172.5 (6)N3—C1—N2—C38.1 (12)
N4—C4—N1—Zn11.5 (11)N1—C1—N2—C3166.7 (8)
N2—C1—N1—C4126.5 (8)N3—C1—N2—C2168.4 (8)
N3—C1—N1—C458.5 (10)N1—C1—N2—C216.8 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3F···Br1i0.91 (2)2.67 (5)3.500 (8)152 (8)
N3—H3G···Br1ii0.91 (2)2.85 (8)3.416 (7)122 (7)
C3—H3D···Br2ii0.963.043.959 (13)160
C3—H3C···Br2iii0.962.983.665 (12)130
C2—H2A···Br2iv0.962.843.747 (10)157
N5—H5G···Br3i0.91 (2)2.68 (5)3.526 (7)155 (8)
N4—H4G···Br3i0.92 (2)2.65 (6)3.446 (7)146 (8)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+2, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

The financial support of our research by CONACYT (247089) and PAPIIT (IA202315) is gratefully acknowledged.

References

First citationAgilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPérez-Fernández, R., Fresno, N., Goya, P., Elguero, J., Menéndez-Taboada, L., García-Granda, S. & Marco, C. (2013). Cryst. Growth Des. 13, 1780–1785.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWelton, T. (1999). Chem. Rev. 99, 2071–2084.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds