organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-[(E)-4-Hydroxybut-2-en-1-yl]-2-methoxyphenol

aDepartment of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA
*Correspondence e-mail: kyle-knight@utc.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 19 May 2016; accepted 9 June 2016; online 17 June 2016)

The title compound, C11H14O3, was synthesized by a cross-metathesis reaction. The dihedral angle between the aromatic ring and the butenol side chain is 30.2 (2)°. In the crystal, inversion dimers are formed through O—H⋯O hydrogen bonds and these are linked into chains by additional O—H⋯O contacts. These chains are linked into sheets in the bc plane by C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) was synthesized by the cross-metathesis (Scholl, et al. 1999[Scholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953-956.]) of eugenol and cis-2-butene-1,4-diol, as previously described (Taber & Frankowski, 2006[Taber, D. F. & Frankowski, K. J. (2006). J. Chem. Educ. 83, 283-284.]). This compound is a natural product that can also be isolated from the rhizomes of Zingiber cassumunar (Masuda & Jitoe, 1995[Masuda, T. & Jitoe, A. (1995). Phytochem. 39, 459-461.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The dihedral angle between the aromatic ring and the butenol side chain is 30.2 (2)°. The methyl group of the meth­oxy-substituent is twisted out of the plane of the aromatic ring by 6.8 (2)°. In the crystal, the unit cell contains inversion dimers connected by hydrogen bonding. Each phenol hydroxyl group acts as a hydrogen-bond donor to the allylic hydroxyl in its dimeric counterpart through O1—H1⋯O2 hydrogen bonds (Table 1[link] and Fig. 2[link]). The allylic hydroxyl group is a bifurcated donor, forming O2—H2⋯O1 and O2—H2⋯O3 hydrogen bonds that link the dimers into supra­molecular chains propagated along the c-axis direction. Chains of dimers are linked by C7–H7⋯O3 hydrogen bonds forming sheets of mol­ecules in the bc plane

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.80 (1) 2.635 (2) 174 (2)
Symmetry code: (i) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
Crystal packing of the title compound, viewed along the a axis with hydrogen bonds drawn as dashed lines.

Synthesis and crystallization

The Grubbs second-generation catalyst, tri­cyclo­hexyl­phosphine[1,3-bis-(2,4,6-tri­methyl­phen­yl)-4,5-di­hydro­imidazol-2-yl­idene][benzyl­idene]ruthenium(IV) dichloride (Grubbs, 2004[Grubbs, R. H. (2004). Tetrahedron, 60, 7117-7140.]), was used to facilitate the cross metathesis of eugenol with cis-1,4-butenediol, to form the title compound. The product was mpurified by column chromatography, and allowed to crystallize from di­chloro­methane at room temperature over the course of 14 days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H14O3
Mr 194.22
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 5.7659 (11), 8.5396 (17), 10.804 (2)
α, β, γ (°) 81.579 (6), 88.020 (6), 71.167 (6)
V3) 498.03 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.6 × 0.4 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 9408, 1736, 1487
Rint 0.042
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.114, 1.07
No. of reflections 1736
No. of parameters 130
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-[(E)-4-Hydroxybut-2-en-1-yl]-2-methoxyphenol top
Crystal data top
C11H14O3Z = 2
Mr = 194.22F(000) = 208
Triclinic, P1Dx = 1.295 Mg m3
a = 5.7659 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5396 (17) ÅCell parameters from 3014 reflections
c = 10.804 (2) Åθ = 2.5–24.8°
α = 81.579 (6)°µ = 0.09 mm1
β = 88.020 (6)°T = 200 K
γ = 71.167 (6)°Plate, colorless
V = 498.03 (17) Å30.6 × 0.4 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.042
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
φ and ω scansh = 66
9408 measured reflectionsk = 1010
1736 independent reflectionsl = 1212
1487 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.044P)2 + 0.2128P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1736 reflectionsΔρmax = 0.49 e Å3
130 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6301 (2)0.80940 (16)0.11536 (11)0.0390 (4)
H10.66440.89810.11390.058*
O20.2842 (3)0.90321 (18)0.90202 (13)0.0513 (4)
H20.33650.83670.96790.077*
O30.3545 (2)0.62145 (15)0.11605 (11)0.0369 (3)
C10.5208 (3)0.7770 (2)0.22611 (16)0.0306 (4)
C20.5516 (3)0.8357 (2)0.33455 (16)0.0335 (4)
H2A0.65630.90170.33530.040*
C30.4301 (3)0.7991 (2)0.44320 (16)0.0336 (4)
H30.45420.83940.51760.040*
C40.2748 (3)0.7049 (2)0.44395 (16)0.0304 (4)
C50.1392 (3)0.6612 (2)0.56028 (16)0.0356 (4)
H5A0.01420.64650.53370.043*
H5B0.24140.55270.60550.043*
C60.0766 (3)0.7860 (2)0.64830 (17)0.0377 (5)
H60.01710.89770.61680.045*
C70.1425 (4)0.7521 (2)0.76809 (18)0.0402 (5)
H70.24040.64120.79900.048*
C80.0739 (4)0.8755 (3)0.85676 (19)0.0467 (5)
H8A0.03880.98240.81440.056*
H8B0.01370.83450.92810.056*
C90.3699 (3)0.6775 (2)0.22712 (15)0.0299 (4)
C100.2208 (4)0.5064 (2)0.11609 (19)0.0418 (5)
H10A0.28490.41200.18270.063*
H10B0.23880.46530.03510.063*
H10C0.04700.56300.13050.063*
C110.2463 (3)0.6443 (2)0.33454 (16)0.0315 (4)
H110.14050.57920.33370.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0481 (8)0.0432 (8)0.0330 (7)0.0256 (6)0.0103 (6)0.0055 (6)
O20.0763 (11)0.0483 (9)0.0362 (8)0.0328 (8)0.0110 (7)0.0048 (6)
O30.0461 (8)0.0439 (7)0.0273 (7)0.0233 (6)0.0004 (5)0.0059 (5)
C10.0304 (9)0.0308 (9)0.0289 (9)0.0100 (7)0.0027 (7)0.0003 (7)
C20.0335 (10)0.0345 (9)0.0370 (10)0.0173 (8)0.0014 (8)0.0049 (8)
C30.0365 (10)0.0357 (10)0.0299 (9)0.0124 (8)0.0010 (7)0.0062 (7)
C40.0307 (9)0.0286 (9)0.0292 (9)0.0074 (7)0.0002 (7)0.0005 (7)
C50.0383 (10)0.0371 (10)0.0311 (10)0.0144 (8)0.0024 (8)0.0009 (7)
C60.0399 (11)0.0382 (10)0.0352 (10)0.0145 (8)0.0069 (8)0.0029 (8)
C70.0421 (11)0.0381 (10)0.0419 (11)0.0172 (9)0.0061 (9)0.0017 (8)
C80.0560 (13)0.0495 (12)0.0371 (11)0.0218 (10)0.0066 (9)0.0049 (9)
C90.0321 (9)0.0283 (9)0.0280 (9)0.0092 (7)0.0023 (7)0.0012 (7)
C100.0447 (11)0.0472 (11)0.0427 (11)0.0249 (9)0.0008 (9)0.0123 (9)
C110.0326 (10)0.0319 (9)0.0318 (9)0.0144 (8)0.0004 (7)0.0003 (7)
Geometric parameters (Å, º) top
O1—H10.8400C5—H5A0.9900
O1—C11.367 (2)C5—H5B0.9900
O2—H20.8400C5—C61.481 (3)
O2—C81.424 (3)C6—H60.9500
O3—C91.371 (2)C6—C71.325 (3)
O3—C101.431 (2)C7—H70.9500
C1—C21.378 (3)C7—C81.478 (3)
C1—C91.397 (2)C8—H8A0.9900
C2—H2A0.9500C8—H8B0.9900
C2—C31.394 (2)C9—C111.383 (2)
C3—H30.9500C10—H10A0.9800
C3—C41.383 (3)C10—H10B0.9800
C4—C51.521 (2)C10—H10C0.9800
C4—C111.392 (2)C11—H110.9500
C1—O1—H1109.5C7—C6—H6117.8
C8—O2—H2109.5C6—C7—H7117.8
C9—O3—C10116.99 (14)C6—C7—C8124.33 (19)
O1—C1—C2124.05 (16)C8—C7—H7117.8
O1—C1—C9116.82 (15)O2—C8—C7111.23 (18)
C2—C1—C9119.13 (16)O2—C8—H8A109.4
C1—C2—H2A119.8O2—C8—H8B109.4
C1—C2—C3120.46 (16)C7—C8—H8A109.4
C3—C2—H2A119.8C7—C8—H8B109.4
C2—C3—H3119.6H8A—C8—H8B108.0
C4—C3—C2120.74 (16)O3—C9—C1115.16 (15)
C4—C3—H3119.6O3—C9—C11124.74 (16)
C3—C4—C5122.59 (16)C11—C9—C1120.09 (16)
C3—C4—C11118.57 (16)O3—C10—H10A109.5
C11—C4—C5118.82 (15)O3—C10—H10B109.5
C4—C5—H5A108.5O3—C10—H10C109.5
C4—C5—H5B108.5H10A—C10—H10B109.5
H5A—C5—H5B107.5H10A—C10—H10C109.5
C6—C5—C4115.18 (15)H10B—C10—H10C109.5
C6—C5—H5A108.5C4—C11—H11119.5
C6—C5—H5B108.5C9—C11—C4120.96 (16)
C5—C6—H6117.8C9—C11—H11119.5
C7—C6—C5124.35 (18)
O1—C1—C2—C3178.96 (16)C3—C4—C5—C630.2 (2)
O1—C1—C9—O31.3 (2)C3—C4—C11—C90.1 (3)
O1—C1—C9—C11177.74 (15)C4—C5—C6—C7123.8 (2)
O3—C9—C11—C4179.28 (15)C5—C4—C11—C9178.60 (15)
C1—C2—C3—C40.7 (3)C5—C6—C7—C8178.11 (18)
C1—C9—C11—C41.8 (3)C6—C7—C8—O2116.2 (2)
C2—C1—C9—O3178.53 (15)C9—C1—C2—C31.2 (3)
C2—C1—C9—C112.4 (3)C10—O3—C9—C1174.23 (15)
C2—C3—C4—C5179.76 (16)C10—O3—C9—C116.8 (2)
C2—C3—C4—C111.3 (3)C11—C4—C5—C6151.41 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.80 (1)2.635 (2)174 (2)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

Acknowledgements are made to the National Science Foundation MRI Program (CHE-0951711), the Grote Chemistry Fund at the University of Tennessee at Chattanooga, and to Materia Inc. of Pasadena, CA, USA, for their generous support of our work.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrubbs, R. H. (2004). Tetrahedron, 60, 7117–7140.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMasuda, T. & Jitoe, A. (1995). Phytochem. 39, 459–461.  CrossRef CAS Google Scholar
First citationScholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953–956.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaber, D. F. & Frankowski, K. J. (2006). J. Chem. Educ. 83, 283–284.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds