organic compounds
4-[(E)-4-Hydroxybut-2-en-1-yl]-2-methoxyphenol
aDepartment of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA
*Correspondence e-mail: kyle-knight@utc.edu
The title compound, C11H14O3, was synthesized by a cross-metathesis reaction. The dihedral angle between the aromatic ring and the butenol side chain is 30.2 (2)°. In the crystal, inversion dimers are formed through O—H⋯O hydrogen bonds and these are linked into chains by additional O—H⋯O contacts. These chains are linked into sheets in the bc plane by C—H⋯O hydrogen bonds.
Keywords: crystal structure; alkene metathesis; hydrogen bonding.
CCDC reference: 1484314
Structure description
The title compound (Fig. 1) was synthesized by the cross-metathesis (Scholl, et al. 1999) of eugenol and cis-2-butene-1,4-diol, as previously described (Taber & Frankowski, 2006). This compound is a natural product that can also be isolated from the rhizomes of Zingiber cassumunar (Masuda & Jitoe, 1995).
The dihedral angle between the aromatic ring and the butenol side chain is 30.2 (2)°. The methyl group of the methoxy-substituent is twisted out of the plane of the aromatic ring by 6.8 (2)°. In the crystal, the and Fig. 2). The allylic hydroxyl group is a bifurcated donor, forming O2—H2⋯O1 and O2—H2⋯O3 hydrogen bonds that link the dimers into supramolecular chains propagated along the c-axis direction. Chains of dimers are linked by C7–H7⋯O3 hydrogen bonds forming sheets of molecules in the bc plane
contains inversion dimers connected by hydrogen bonding. Each phenol hydroxyl group acts as a hydrogen-bond donor to the allylic hydroxyl in its dimeric counterpart through O1—H1⋯O2 hydrogen bonds (Table 1Synthesis and crystallization
The Grubbs second-generation catalyst, tricyclohexylphosphine[1,3-bis-(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene][benzylidene]ruthenium(IV) dichloride (Grubbs, 2004), was used to facilitate the cross metathesis of eugenol with cis-1,4-butenediol, to form the title compound. The product was mpurified by and allowed to crystallize from dichloromethane at room temperature over the course of 14 days.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1484314
10.1107/S2414314616009366/sj4039sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616009366/sj4039Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616009366/sj4039Isup3.cdx
Supporting information file. DOI: 10.1107/S2414314616009366/sj4039Isup4.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C11H14O3 | Z = 2 |
Mr = 194.22 | F(000) = 208 |
Triclinic, P1 | Dx = 1.295 Mg m−3 |
a = 5.7659 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.5396 (17) Å | Cell parameters from 3014 reflections |
c = 10.804 (2) Å | θ = 2.5–24.8° |
α = 81.579 (6)° | µ = 0.09 mm−1 |
β = 88.020 (6)° | T = 200 K |
γ = 71.167 (6)° | Plate, colorless |
V = 498.03 (17) Å3 | 0.6 × 0.4 × 0.05 mm |
Bruker APEXII CCD diffractometer | Rint = 0.042 |
Graphite monochromator | θmax = 25.0°, θmin = 3.0° |
φ and ω scans | h = −6→6 |
9408 measured reflections | k = −10→10 |
1736 independent reflections | l = −12→12 |
1487 reflections with I > 2σ(I) |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.044P)2 + 0.2128P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
1736 reflections | Δρmax = 0.49 e Å−3 |
130 parameters | Δρmin = −0.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6301 (2) | 0.80940 (16) | 0.11536 (11) | 0.0390 (4) | |
H1 | 0.6644 | 0.8981 | 0.1139 | 0.058* | |
O2 | 0.2842 (3) | 0.90321 (18) | 0.90202 (13) | 0.0513 (4) | |
H2 | 0.3365 | 0.8367 | 0.9679 | 0.077* | |
O3 | 0.3545 (2) | 0.62145 (15) | 0.11605 (11) | 0.0369 (3) | |
C1 | 0.5208 (3) | 0.7770 (2) | 0.22611 (16) | 0.0306 (4) | |
C2 | 0.5516 (3) | 0.8357 (2) | 0.33455 (16) | 0.0335 (4) | |
H2A | 0.6563 | 0.9017 | 0.3353 | 0.040* | |
C3 | 0.4301 (3) | 0.7991 (2) | 0.44320 (16) | 0.0336 (4) | |
H3 | 0.4542 | 0.8394 | 0.5176 | 0.040* | |
C4 | 0.2748 (3) | 0.7049 (2) | 0.44395 (16) | 0.0304 (4) | |
C5 | 0.1392 (3) | 0.6612 (2) | 0.56028 (16) | 0.0356 (4) | |
H5A | −0.0142 | 0.6465 | 0.5337 | 0.043* | |
H5B | 0.2414 | 0.5527 | 0.6055 | 0.043* | |
C6 | 0.0766 (3) | 0.7860 (2) | 0.64830 (17) | 0.0377 (5) | |
H6 | −0.0171 | 0.8977 | 0.6168 | 0.045* | |
C7 | 0.1425 (4) | 0.7521 (2) | 0.76809 (18) | 0.0402 (5) | |
H7 | 0.2404 | 0.6412 | 0.7990 | 0.048* | |
C8 | 0.0739 (4) | 0.8755 (3) | 0.85676 (19) | 0.0467 (5) | |
H8A | −0.0388 | 0.9824 | 0.8144 | 0.056* | |
H8B | −0.0137 | 0.8345 | 0.9281 | 0.056* | |
C9 | 0.3699 (3) | 0.6775 (2) | 0.22712 (15) | 0.0299 (4) | |
C10 | 0.2208 (4) | 0.5064 (2) | 0.11609 (19) | 0.0418 (5) | |
H10A | 0.2849 | 0.4120 | 0.1827 | 0.063* | |
H10B | 0.2388 | 0.4653 | 0.0351 | 0.063* | |
H10C | 0.0470 | 0.5630 | 0.1305 | 0.063* | |
C11 | 0.2463 (3) | 0.6443 (2) | 0.33454 (16) | 0.0315 (4) | |
H11 | 0.1405 | 0.5792 | 0.3337 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0481 (8) | 0.0432 (8) | 0.0330 (7) | −0.0256 (6) | 0.0103 (6) | −0.0055 (6) |
O2 | 0.0763 (11) | 0.0483 (9) | 0.0362 (8) | −0.0328 (8) | −0.0110 (7) | 0.0048 (6) |
O3 | 0.0461 (8) | 0.0439 (7) | 0.0273 (7) | −0.0233 (6) | 0.0004 (5) | −0.0059 (5) |
C1 | 0.0304 (9) | 0.0308 (9) | 0.0289 (9) | −0.0100 (7) | 0.0027 (7) | 0.0003 (7) |
C2 | 0.0335 (10) | 0.0345 (9) | 0.0370 (10) | −0.0173 (8) | 0.0014 (8) | −0.0049 (8) |
C3 | 0.0365 (10) | 0.0357 (10) | 0.0299 (9) | −0.0124 (8) | −0.0010 (7) | −0.0062 (7) |
C4 | 0.0307 (9) | 0.0286 (9) | 0.0292 (9) | −0.0074 (7) | 0.0002 (7) | −0.0005 (7) |
C5 | 0.0383 (10) | 0.0371 (10) | 0.0311 (10) | −0.0144 (8) | 0.0024 (8) | 0.0009 (7) |
C6 | 0.0399 (11) | 0.0382 (10) | 0.0352 (10) | −0.0145 (8) | 0.0069 (8) | −0.0029 (8) |
C7 | 0.0421 (11) | 0.0381 (10) | 0.0419 (11) | −0.0172 (9) | 0.0061 (9) | −0.0017 (8) |
C8 | 0.0560 (13) | 0.0495 (12) | 0.0371 (11) | −0.0218 (10) | 0.0066 (9) | −0.0049 (9) |
C9 | 0.0321 (9) | 0.0283 (9) | 0.0280 (9) | −0.0092 (7) | −0.0023 (7) | −0.0012 (7) |
C10 | 0.0447 (11) | 0.0472 (11) | 0.0427 (11) | −0.0249 (9) | −0.0008 (9) | −0.0123 (9) |
C11 | 0.0326 (10) | 0.0319 (9) | 0.0318 (9) | −0.0144 (8) | −0.0004 (7) | −0.0003 (7) |
O1—H1 | 0.8400 | C5—H5A | 0.9900 |
O1—C1 | 1.367 (2) | C5—H5B | 0.9900 |
O2—H2 | 0.8400 | C5—C6 | 1.481 (3) |
O2—C8 | 1.424 (3) | C6—H6 | 0.9500 |
O3—C9 | 1.371 (2) | C6—C7 | 1.325 (3) |
O3—C10 | 1.431 (2) | C7—H7 | 0.9500 |
C1—C2 | 1.378 (3) | C7—C8 | 1.478 (3) |
C1—C9 | 1.397 (2) | C8—H8A | 0.9900 |
C2—H2A | 0.9500 | C8—H8B | 0.9900 |
C2—C3 | 1.394 (2) | C9—C11 | 1.383 (2) |
C3—H3 | 0.9500 | C10—H10A | 0.9800 |
C3—C4 | 1.383 (3) | C10—H10B | 0.9800 |
C4—C5 | 1.521 (2) | C10—H10C | 0.9800 |
C4—C11 | 1.392 (2) | C11—H11 | 0.9500 |
C1—O1—H1 | 109.5 | C7—C6—H6 | 117.8 |
C8—O2—H2 | 109.5 | C6—C7—H7 | 117.8 |
C9—O3—C10 | 116.99 (14) | C6—C7—C8 | 124.33 (19) |
O1—C1—C2 | 124.05 (16) | C8—C7—H7 | 117.8 |
O1—C1—C9 | 116.82 (15) | O2—C8—C7 | 111.23 (18) |
C2—C1—C9 | 119.13 (16) | O2—C8—H8A | 109.4 |
C1—C2—H2A | 119.8 | O2—C8—H8B | 109.4 |
C1—C2—C3 | 120.46 (16) | C7—C8—H8A | 109.4 |
C3—C2—H2A | 119.8 | C7—C8—H8B | 109.4 |
C2—C3—H3 | 119.6 | H8A—C8—H8B | 108.0 |
C4—C3—C2 | 120.74 (16) | O3—C9—C1 | 115.16 (15) |
C4—C3—H3 | 119.6 | O3—C9—C11 | 124.74 (16) |
C3—C4—C5 | 122.59 (16) | C11—C9—C1 | 120.09 (16) |
C3—C4—C11 | 118.57 (16) | O3—C10—H10A | 109.5 |
C11—C4—C5 | 118.82 (15) | O3—C10—H10B | 109.5 |
C4—C5—H5A | 108.5 | O3—C10—H10C | 109.5 |
C4—C5—H5B | 108.5 | H10A—C10—H10B | 109.5 |
H5A—C5—H5B | 107.5 | H10A—C10—H10C | 109.5 |
C6—C5—C4 | 115.18 (15) | H10B—C10—H10C | 109.5 |
C6—C5—H5A | 108.5 | C4—C11—H11 | 119.5 |
C6—C5—H5B | 108.5 | C9—C11—C4 | 120.96 (16) |
C5—C6—H6 | 117.8 | C9—C11—H11 | 119.5 |
C7—C6—C5 | 124.35 (18) | ||
O1—C1—C2—C3 | 178.96 (16) | C3—C4—C5—C6 | 30.2 (2) |
O1—C1—C9—O3 | 1.3 (2) | C3—C4—C11—C9 | −0.1 (3) |
O1—C1—C9—C11 | −177.74 (15) | C4—C5—C6—C7 | −123.8 (2) |
O3—C9—C11—C4 | 179.28 (15) | C5—C4—C11—C9 | −178.60 (15) |
C1—C2—C3—C4 | −0.7 (3) | C5—C6—C7—C8 | −178.11 (18) |
C1—C9—C11—C4 | −1.8 (3) | C6—C7—C8—O2 | −116.2 (2) |
C2—C1—C9—O3 | −178.53 (15) | C9—C1—C2—C3 | −1.2 (3) |
C2—C1—C9—C11 | 2.4 (3) | C10—O3—C9—C1 | 174.23 (15) |
C2—C3—C4—C5 | 179.76 (16) | C10—O3—C9—C11 | −6.8 (2) |
C2—C3—C4—C11 | 1.3 (3) | C11—C4—C5—C6 | −151.41 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.84 | 1.80 (1) | 2.635 (2) | 174 (2) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Acknowledgements
Acknowledgements are made to the National Science Foundation MRI Program (CHE-0951711), the Grote Chemistry Fund at the University of Tennessee at Chattanooga, and to Materia Inc. of Pasadena, CA, USA, for their generous support of our work.
References
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grubbs, R. H. (2004). Tetrahedron, 60, 7117–7140. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Masuda, T. & Jitoe, A. (1995). Phytochem. 39, 459–461. CrossRef CAS Google Scholar
Scholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953–956. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Taber, D. F. & Frankowski, K. J. (2006). J. Chem. Educ. 83, 283–284. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.