organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4′-(3,4-Di­meth­­oxy­phen­yl)-2,2′:6′,2′′-terpyridine

aInstitute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, and bDepartment of Industrial Systems Engineering, Cluster of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
*Correspondence e-mail: daio@sss.fukushima-u.ac.jp

Edited by J. Simpson, University of Otago, New Zealand (Received 13 May 2016; accepted 13 June 2016; online 21 June 2016)

In the title compound, C23H19N3O2, the terpyridine unit has a di­meth­oxy­phenyl substituent at the 4-position of the central pyridyl ring. The three pyridyl rings are in a transoid conformation with respect to the inter­annular C—C bonds. In addition, the pendant di­meth­oxy­phenyl substituent is almost coplanar with the terpyridyl unit; the dihedral angle between the central pyridyl ring and the benzene ring is 7.14 (11)°, which is much smaller than that found in the structural isomer with a 2,5-di­meth­oxy­phenyl substituent. The C—C and C—N bond lengths within the aromatic rings are normal. One of the terminal pyridyl rings is disordered over two sets of sites with an occupancy ratio of 0.744 (7):0.256 (7). The orientation of the two meth­oxy groups at the 3- and 4-positions is such that the methyl groups point away from each other in opposite directions. In the crystal structure, C–H⋯N hydrogen bonds form chains along b while C—H⋯O contacts form inversion dimers, creating double chains. These combine with C—H⋯π contacts and ππ inter­actions, with a centroid-centroid distance of 3.858 (4) Å, to stack mol­ecules along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Polypyridines display unique photophysical and redox properties (Winter et al., 2011[Winter, A., Hoeppener, S., Newkome, G. R. & Schubert, U. S. (2011). Adv. Mater. 23, 3484-3498.]). Terpyridine analogs are also known to act as tridentate ligands using all three of the N-donor atoms.

Although the title compound, C23H19N3O2, has been obtained previously by a standard Kröhnke-type synthesis (Whittle et al., 1995[Whittle, B., Everest, N. S., Howard, C. & Ward, M. D. (1995). Inorg. Chem. 34, 2025-2032.]), we have prepared it by a direct condensation reaction between 2-acetyl­pyridine and 3,4-di­meth­oxy­benzaldehyde, according to a procedure reported earlier for a similar compound (Storrier et al., 1998[Storrier, G. D., Colbran, S. B. & Craig, D. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1351-1364.]).

In the mol­ecule (Fig. 1[link]), the terpyridine unit has a di­meth­oxy­phenyl substituent at the 4-position of the central pyridyl ring. The three pyridyl rings adopt the expected transoid conformation with respect to the inter­annular C—C bonds. The pendant di­meth­oxy­phenyl substituent lies close to the plane of the terpyridyl unit with a dihedral angle of 7.14 (11)° between the N2/C6–C10 and C16–C21 ring planes. This is comparable to that found for the related compound with a phenyl substituent (10.9°; Constable et al., 1990[Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.]) but distinct from that of the corresponding 2,5-di­meth­oxy­phenyl structural isomer (50.2°; Storrier et al., 1998[Storrier, G. D., Colbran, S. B. & Craig, D. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1351-1364.]). This difference can be ascribed in part to the intra­molecular steric inter­actions between the ortho-substituents (either –OCH3 or –H) on the phenyl ring and the 3- or 5-protons on the central pyridine ring. One of the terminal pyridyl rings is disordered over two sets of sites with an occupancy ratio of 0.744 (7):0.256 (7). The orientation of the two meth­oxy groups at the 3- and 4-positions is such that the methyl groups point away from each other in opposite directions.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Only the major component of the disordered pyridyl ring is shown.

In the crystal structure, a ππ contact between Cg3 and Cg4, 3.858 (4) Å, (Cg3 and Cg4 are the centroids of the N2/C6–C10 and N3/C11–C15 rings respectively; symmetry operation x, −1 + y, z) stack mol­ecules along the b-axis direction, Fig. 2[link]. C18—H12⋯π and C23—H19⋯π hydrogen bonds (Table 1[link]) also contribute to this stacking. In addition C3A—H3A⋯N3 hydrogen bonds form C(10) chains along a while C23—H18 ⋯O3 contacts form inversion dimers and, together with a C23—H17⋯π contact, generate a double chain of mol­ecules along a. The overall effect, Fig. 3[link], sees sheets of mol­ecules stacked along the b-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg5 are the centroids of the N1/C1–C5A and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3A—H3A⋯N3i 0.95 2.43 3.285 (7) 149
C23—H18⋯O1ii 0.98 2.53 3.511 (5) 174
C18—H12⋯Cg5iii 0.95 2.87 3.648 (5) 139
C23—H17⋯Cg1iv 098 2.90 3.432 (5) 115
C23—H19⋯Cg5v 0.98 2.89 3.724 (5) 143
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) -x+1, -y+1, -z+2; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+2]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (v) x, y+1, z.
[Figure 2]
Figure 2
ππ contacts in the crystal packing of the title compound. Only the major component of the disordered pyridyl ring is shown.
[Figure 3]
Figure 3
Overall packing of the title compound viewed along b. Hydrogen bonds are drawn as blue dashed lines with representative ππ and C—H⋯π contacts shown as green dotted lines. Ring centroids are shown as coloured spheres.

Synthesis and crystallization

The title compound was prepared by a direct condensation reaction between 2-acetyl­pyridine and 3,4-di­meth­oxy­benzaldehyde in ammonium acetate–acetamide to afford a pale-yellow solid in 23% yield, which is a modification of a literature method (Storrier et al., 1998[Storrier, G. D., Colbran, S. B. & Craig, D. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1351-1364.]). The crude product was purified by column chromatography and then recrystallized from a chloro­form–diethyl ether (1/40) mixture at ambient temperature to give good quality crystals suitable for X-ray diffraction.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. The carbon atoms of one of the pyridyl rings were disordered over two sites and refined as (C2A, C3A, C4A, C5A) and (C2B, C3B, C4B, C5B) with occupancies that sum to unity. This disorder model converged with an occupancy ratio 0.744 (7):0.256 (7).

Table 2
Experimental details

Crystal data
Chemical formula C23H19N3O2
Mr 369.42
Crystal system, space group Monoclinic, P21/a
Temperature (K) 93
a, b, c (Å) 18.280 (14), 5.493 (4), 18.298 (14)
β (°) 96.020 (6)
V3) 1827 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.15 × 0.08
 
Data collection
Diffractometer Rigaku Saturn724
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.881, 0.993
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 17670, 4118, 2937
Rint 0.075
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.100, 0.224, 1.14
No. of reflections 4118
No. of parameters 270
No. of restraints 18
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.43
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. CrystalStructure]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

4'-(3,4-Dimethoxyphenyl)-2,2':6',2''-terpyridine top
Crystal data top
C23H19N3O2F(000) = 776.00
Mr = 369.42Dx = 1.343 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2yabCell parameters from 3564 reflections
a = 18.280 (14) Åθ = 3.0–27.5°
b = 5.493 (4) ŵ = 0.09 mm1
c = 18.298 (14) ÅT = 93 K
β = 96.020 (6)°Block, colorless
V = 1827 (3) Å30.20 × 0.15 × 0.08 mm
Z = 4
Data collection top
Rigaku Saturn724
diffractometer
2937 reflections with F2 > 2.0σ(F2)
Detector resolution: 28.944 pixels mm-1Rint = 0.075
ω scansθmax = 27.4°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 2323
Tmin = 0.881, Tmax = 0.993k = 76
17670 measured reflectionsl = 2323
4118 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.100Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0698P)2 + 2.0174P]
where P = (Fo2 + 2Fc2)/3
4118 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.44 e Å3
18 restraintsΔρmin = 0.43 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.40936 (11)0.0742 (5)1.03502 (12)0.0328 (6)
O20.42133 (12)0.4172 (5)0.94160 (13)0.0373 (6)
N10.01717 (16)0.3469 (7)0.74911 (17)0.0458 (9)
N20.09106 (15)0.1770 (6)0.66251 (15)0.0391 (8)
N30.21225 (16)0.6651 (6)0.61704 (18)0.0458 (9)
C10.0454 (2)0.4808 (8)0.7454 (2)0.0482 (10)
C2B0.0955 (12)0.468 (4)0.6835 (11)0.045 (6)*0.256 (7)
C2A0.1103 (4)0.4111 (14)0.7073 (4)0.0463 (16)0.744 (7)
C3B0.0833 (9)0.324 (3)0.6262 (9)0.045 (5)*0.256 (7)
C3A0.1108 (3)0.1923 (11)0.6710 (3)0.0416 (15)0.744 (7)
C4B0.0222 (8)0.173 (3)0.6330 (8)0.033 (4)*0.256 (7)
C4A0.0474 (3)0.0582 (9)0.6719 (3)0.0343 (13)0.744 (7)
C5B0.0254 (16)0.171 (6)0.6961 (14)0.031 (7)*0.256 (7)
C5A0.0166 (5)0.1472 (17)0.7106 (5)0.0294 (17)0.744 (7)
C60.08608 (17)0.0020 (7)0.71429 (17)0.0312 (8)
C70.13976 (16)0.0289 (6)0.77322 (17)0.0282 (7)
C80.20105 (16)0.1251 (6)0.78114 (16)0.0282 (7)
C90.20605 (16)0.3003 (6)0.72868 (17)0.0290 (7)
C100.15111 (18)0.3231 (7)0.66967 (17)0.0327 (8)
C110.1539 (2)0.5164 (8)0.6129 (2)0.0419 (9)
C120.0988 (4)0.5414 (11)0.5584 (3)0.096 (2)
C130.1006 (4)0.7274 (14)0.5080 (4)0.127 (3)
C140.1603 (3)0.8778 (11)0.5112 (3)0.0791 (17)
C150.2144 (3)0.8425 (8)0.5668 (3)0.0509 (11)
C160.25678 (16)0.1036 (6)0.84759 (17)0.0271 (7)
C170.25191 (17)0.0796 (7)0.89922 (18)0.0314 (8)
C180.30174 (17)0.0968 (7)0.96230 (18)0.0307 (8)
C190.35774 (16)0.0731 (6)0.97494 (16)0.0274 (7)
C200.36432 (16)0.2606 (6)0.92346 (17)0.0269 (7)
C210.31479 (16)0.2735 (6)0.86080 (17)0.0270 (7)
C220.4094 (2)0.1284 (7)1.0841 (2)0.0459 (10)
C230.43971 (19)0.5865 (7)0.88633 (19)0.0376 (9)
H10.04410.63200.77080.0578*
H2A0.15320.50950.70600.0556*0.744 (7)
H2B0.13920.56290.68110.0545*0.256 (7)
H3A0.15510.13370.64520.0499*0.744 (7)
H3B0.11590.32680.58220.0543*0.256 (7)
H4A0.04730.09280.64670.0411*0.744 (7)
H4B0.01330.06860.59340.0391*0.256 (7)
H50.13480.15440.80810.0338*
H60.24710.40720.73230.0348*
H70.05870.43060.55470.1153*
H80.06050.75060.47120.1520*
H90.16381.00280.47590.0949*
H100.25580.94820.57030.0611*
H110.21360.19650.89140.0377*
H120.29730.22470.99650.0368*
H130.31990.39910.82600.0324*
H140.44150.09271.12910.0551*
H150.42750.27341.06050.0551*
H160.35930.15791.09640.0551*
H170.45530.49660.84440.0452*
H180.47980.69250.90700.0452*
H190.39650.68570.87000.0452*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (12)0.0376 (14)0.0326 (12)0.0081 (10)0.0100 (9)0.0043 (11)
O20.0285 (12)0.0427 (15)0.0385 (13)0.0161 (11)0.0062 (10)0.0035 (11)
N10.0304 (16)0.064 (3)0.0415 (17)0.0086 (15)0.0048 (13)0.0096 (17)
N20.0261 (15)0.052 (2)0.0378 (16)0.0039 (14)0.0017 (12)0.0015 (15)
N30.0301 (16)0.048 (2)0.060 (2)0.0081 (14)0.0083 (15)0.0105 (17)
C10.043 (3)0.058 (3)0.042 (2)0.007 (2)0.0024 (17)0.016 (2)
C2A0.032 (3)0.073 (5)0.034 (3)0.018 (3)0.000 (3)0.007 (4)
C3A0.023 (3)0.067 (4)0.033 (3)0.004 (3)0.0054 (19)0.003 (3)
C4A0.026 (3)0.040 (3)0.035 (3)0.002 (2)0.0054 (19)0.004 (3)
C5A0.020 (3)0.048 (5)0.020 (4)0.000 (3)0.000 (3)0.002 (3)
C60.0226 (15)0.040 (2)0.0302 (16)0.0030 (14)0.0024 (13)0.0003 (15)
C70.0229 (15)0.0327 (18)0.0277 (16)0.0018 (13)0.0026 (13)0.0017 (14)
C80.0203 (15)0.0366 (19)0.0273 (16)0.0044 (13)0.0011 (12)0.0050 (14)
C90.0179 (14)0.0382 (19)0.0306 (16)0.0011 (14)0.0005 (13)0.0037 (15)
C100.0267 (17)0.041 (2)0.0302 (16)0.0003 (15)0.0017 (13)0.0059 (15)
C110.0333 (19)0.052 (3)0.041 (2)0.0086 (17)0.0034 (16)0.0035 (18)
C120.096 (4)0.114 (5)0.068 (3)0.069 (4)0.038 (3)0.048 (3)
C130.112 (5)0.156 (6)0.098 (4)0.079 (5)0.057 (4)0.072 (4)
C140.072 (4)0.097 (4)0.065 (3)0.027 (3)0.012 (3)0.040 (3)
C150.039 (3)0.048 (3)0.067 (3)0.0001 (19)0.013 (2)0.019 (3)
C160.0172 (14)0.0338 (18)0.0298 (16)0.0015 (13)0.0004 (12)0.0046 (14)
C170.0216 (15)0.0337 (19)0.0374 (18)0.0064 (14)0.0039 (13)0.0006 (15)
C180.0250 (16)0.0332 (18)0.0324 (17)0.0043 (14)0.0038 (13)0.0032 (15)
C190.0199 (15)0.0332 (18)0.0280 (16)0.0006 (13)0.0032 (12)0.0040 (14)
C200.0194 (14)0.0299 (18)0.0312 (16)0.0018 (13)0.0019 (12)0.0032 (14)
C210.0216 (15)0.0301 (18)0.0291 (16)0.0008 (13)0.0014 (12)0.0009 (14)
C220.043 (2)0.046 (3)0.044 (2)0.0116 (18)0.0174 (17)0.0109 (18)
C230.0342 (18)0.041 (2)0.0372 (19)0.0146 (16)0.0027 (15)0.0059 (16)
Geometric parameters (Å, º) top
O1—C191.372 (4)C14—C151.357 (7)
O1—C221.430 (5)C16—C171.390 (5)
O2—C201.365 (4)C16—C211.414 (5)
O2—C231.439 (5)C17—C181.397 (5)
N1—C11.356 (6)C18—C191.387 (5)
N1—C5B1.39 (3)C19—C201.409 (5)
N1—C5A1.303 (10)C20—C211.386 (5)
N2—C61.360 (5)C1—H10.950
N2—C101.355 (5)C2B—H2B0.950
N3—C111.340 (5)C2A—H2A0.950
N3—C151.344 (6)C3B—H3B0.950
C1—C2B1.38 (2)C3A—H3A0.950
C1—C2A1.366 (7)C4B—H4B0.950
C2B—C3B1.35 (3)C4A—H4A0.950
C2A—C3A1.373 (9)C7—H50.950
C3B—C4B1.39 (2)C9—H60.950
C3A—C4A1.371 (7)C12—H70.950
C4B—C5B1.37 (3)C13—H80.950
C4A—C5A1.392 (9)C14—H90.950
C5B—C61.47 (3)C15—H100.950
C5A—C61.51 (1)C17—H110.950
C6—C71.390 (5)C18—H120.950
C7—C81.399 (5)C21—H130.950
C8—C91.369 (5)C22—H140.980
C8—C161.507 (4)C22—H150.980
C9—C101.401 (5)C22—H160.980
C10—C111.490 (6)C23—H170.980
C11—C121.348 (7)C23—H180.980
C12—C131.379 (9)C23—H190.980
C13—C141.365 (9)
C19—O1—C22117.0 (3)C2B—C1—H1115.146
C20—O2—C23117.7 (3)C2A—C1—H1118.101
C1—N1—C5B119.7 (12)C1—C2B—H2B119.442
C1—N1—C5A118.1 (5)C3B—C2B—H2B119.434
C6—N2—C10117.7 (3)C1—C2A—H2A121.526
C11—N3—C15119.0 (4)C3A—C2A—H2A121.510
N1—C1—C2B119.8 (10)C2B—C3B—H3B120.699
N1—C1—C2A123.8 (5)C4B—C3B—H3B120.704
C1—C2B—C3B121.1 (17)C2A—C3A—H3A119.945
C1—C2A—C3A117.0 (6)C4A—C3A—H3A119.929
C2B—C3B—C4B118.6 (15)C3B—C4B—H4B119.525
C2A—C3A—C4A120.1 (5)C5B—C4B—H4B119.544
C3B—C4B—C5B120.9 (17)C3A—C4A—H4A120.592
C3A—C4A—C5A118.8 (6)C5A—C4A—H4A120.568
N1—C5B—C4B118 (3)C6—C7—H5120.034
N1—C5A—C4A121.9 (7)C8—C7—H5120.028
N2—C6—C7122.2 (3)C8—C9—H6119.727
C6—C7—C8119.9 (3)C10—C9—H6119.732
C7—C8—C9117.6 (3)C11—C12—H7119.902
C7—C8—C16120.2 (3)C13—C12—H7119.894
C9—C8—C16122.1 (3)C12—C13—H8120.215
C8—C9—C10120.5 (3)C14—C13—H8120.221
N2—C10—C9122.0 (3)C13—C14—H9121.201
N2—C10—C11116.2 (3)C15—C14—H9121.188
C9—C10—C11121.8 (3)N3—C15—H10118.484
N3—C11—C10118.7 (3)C14—C15—H10118.487
N3—C11—C12120.5 (4)C16—C17—H11119.063
C10—C11—C12120.8 (4)C18—C17—H11119.048
C11—C12—C13120.2 (6)C17—C18—H12120.059
C12—C13—C14119.6 (6)C19—C18—H12120.051
C13—C14—C15117.6 (6)C16—C21—H13119.310
N3—C15—C14123.0 (4)C20—C21—H13119.313
C8—C16—C17121.3 (3)O1—C22—H14109.474
C8—C16—C21121.2 (3)O1—C22—H15109.477
C17—C16—C21117.5 (3)O1—C22—H16109.470
C16—C17—C18121.9 (3)H14—C22—H15109.474
C17—C18—C19119.9 (3)H14—C22—H16109.461
O1—C19—C18124.8 (3)H15—C22—H16109.471
O1—C19—C20115.6 (3)O2—C23—H17109.476
C18—C19—C20119.6 (3)O2—C23—H18109.480
O2—C20—C19114.5 (3)O2—C23—H19109.465
O2—C20—C21125.8 (3)H17—C23—H18109.468
C19—C20—C21119.7 (3)H17—C23—H19109.463
C16—C21—C20121.4 (3)H18—C23—H19109.475
N1—C1—H1118.105
C22—O1—C19—C186.5 (5)C7—C8—C16—C175.0 (5)
C22—O1—C19—C20173.2 (3)C7—C8—C16—C21173.1 (3)
C23—O2—C20—C19169.3 (3)C9—C8—C16—C17178.2 (3)
C23—O2—C20—C2110.8 (5)C9—C8—C16—C213.6 (5)
C1—N1—C5B—C4B14 (3)C16—C8—C9—C10176.5 (3)
C5B—N1—C1—C2B9.9 (15)C8—C9—C10—N20.8 (5)
C5B—N1—C1—C2A20.7 (15)C8—C9—C10—C11178.2 (3)
C1—N1—C5A—C4A6.1 (10)N2—C10—C11—N3179.6 (3)
C5A—N1—C1—C2B26.3 (7)N2—C10—C11—C120.4 (5)
C5A—N1—C1—C2A4.3 (7)C9—C10—C11—N32.9 (5)
C6—N2—C10—C91.1 (5)C9—C10—C11—C12177.1 (3)
C6—N2—C10—C11178.6 (3)N3—C11—C12—C132.8 (8)
C10—N2—C6—C70.3 (5)C10—C11—C12—C13177.3 (4)
C11—N3—C15—C140.6 (6)C11—C12—C13—C143.5 (10)
C15—N3—C11—C10178.8 (4)C12—C13—C14—C152.8 (9)
C15—N3—C11—C121.3 (6)C13—C14—C15—N31.3 (8)
N1—C1—C2B—C3B0 (2)C8—C16—C17—C18177.8 (3)
N1—C1—C2A—C3A0.2 (8)C8—C16—C21—C20177.2 (3)
C2B—C1—C2A—C3A89 (2)C17—C16—C21—C201.0 (5)
C2A—C1—C2B—C3B107 (3)C21—C16—C17—C180.4 (5)
C1—C2B—C3B—C4B5 (3)C16—C17—C18—C190.4 (5)
C1—C2A—C3A—C4A2.1 (8)C17—C18—C19—O1179.7 (3)
C2B—C3B—C4B—C5B1 (3)C17—C18—C19—C200.7 (5)
C2A—C3A—C4A—C5A0.4 (8)O1—C19—C20—O20.4 (4)
C3B—C4B—C5B—N19 (4)O1—C19—C20—C21179.7 (3)
C3A—C4A—C5A—N13.9 (10)C18—C19—C20—O2179.9 (3)
N2—C6—C7—C80.8 (5)C18—C19—C20—C210.0 (5)
C6—C7—C8—C91.1 (5)O2—C20—C21—C16179.1 (3)
C6—C7—C8—C16175.8 (3)C19—C20—C21—C160.8 (5)
C7—C8—C9—C100.3 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg5 are the centroids of the N1,C1–C5A and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3A—H3A···N3i0.952.433.285 (7)149
C23—H18···O1ii0.982.533.511 (5)174
C18—H12···Cg5iii0.952.873.648 (5)139
C23—H17···Cg1iv0982.903.432 (5)115
C23—H19···Cg5v0.982.893.724 (5)143
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y+1, z+2; (iii) x+1/2, y1/2, z+2; (iv) x+1/2, y+1/2, z; (v) x, y+1, z.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationConstable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. CrystalStructure  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStorrier, G. D., Colbran, S. B. & Craig, D. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1351–1364.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhittle, B., Everest, N. S., Howard, C. & Ward, M. D. (1995). Inorg. Chem. 34, 2025–2032.  CrossRef CAS Google Scholar
First citationWinter, A., Hoeppener, S., Newkome, G. R. & Schubert, U. S. (2011). Adv. Mater. 23, 3484–3498.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds